Nonlocal problem for partial differential equations of fractional order
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 1, pp. 78-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlocal problem is investigated for the partial differential equation (diffusion equation of fractional order) in a finite domain. The boundary condition contains a linear combination of generalized operators of fractional integro-differentiation used on the solution in the characteristics and the solution and its derivative in the degenerating line. The uniqueness of the solution is proved by a modified Tricomi method. The existence of the solution is equivalently reduced to the question of the solvability of Fredholm integral equations of the second kind.
Keywords: operator of fractional integro-differentiation, boundary value problem, Fredholm integral equation of the second kind.
@article{VSGTU_2015_19_1_a4,
     author = {O. A. Repin and A. V. Tarasenko},
     title = {Nonlocal problem for partial differential equations of fractional order},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {78--86},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a4/}
}
TY  - JOUR
AU  - O. A. Repin
AU  - A. V. Tarasenko
TI  - Nonlocal problem for partial differential equations of fractional order
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 78
EP  - 86
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a4/
LA  - ru
ID  - VSGTU_2015_19_1_a4
ER  - 
%0 Journal Article
%A O. A. Repin
%A A. V. Tarasenko
%T Nonlocal problem for partial differential equations of fractional order
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 78-86
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a4/
%G ru
%F VSGTU_2015_19_1_a4
O. A. Repin; A. V. Tarasenko. Nonlocal problem for partial differential equations of fractional order. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 1, pp. 78-86. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a4/

[1] Samko St. G., Kilbas A. A., Marichev O. I., Fractional integrals and derivatives: theory and applications, Gordon and Breach, New York, NY, 1993, xxxvi+976 pp. | Zbl | Zbl

[2] Saigo M., “A remark on integral operators involving the Gauss hypergeometric function”, Math. Rep. Coll. Gen. Educ., Kyushu Univ., 11:2 (1978), 135–143 | Zbl

[3] Repin O. A., Kraevye zadachi so smeshcheniem dlia uravnenii giperbolicheskogo i smeshannogo tipov [Boundary value problems with shift for equations of hyperbolic and mixed type], Saratov, 1992, 164 pp. (In Russian) | Zbl

[4] Kochubei A. N., “Fractional-order diffusion”, Differ. Equ., 26:4 (1990), 485–492 | Zbl | Zbl

[5] Bitsadze A. N., Nekotorye klassy uravnenii v chastnykh proizvodnykh [Some Classes of Partial Differential Equations], Nauka, Moscow, 1981, 448 pp. (In Russian)

[6] Gekkieva S. Kh., “An analog of the Tricomi problem for a mixed type equation with a partial fractional derivative”, Izvestiya Kabardino-Balkarskaya Nauchnoogo Tsentra RAN, 2001, no. 2(7), 78–80 (In Russian)

[7] Kilbas A. A., Repin O. A., “Solvability of a boundary value problem for a mixed-type equation with a partial Riemann–Liouville fractional derivative”, Differ. Equ., 46:10 (2010), 1457–1464 | DOI | Zbl

[8] Repin O. A., Kumykova S. K., “A nonlocal problem with fractional derivatives for the mixed type equation”, Russian Math. (Iz. VUZ), 58:8 (2014), 65–70 | DOI | Zbl

[9] Repin O. A., Kumykova S. K., “On a boundary value problem with shift for an equation of mixed type in an unbounded domain”, Differ. Equ., 48:8 (2012), 1127–1136 | DOI | Zbl

[10] Repin O. A., Kumykova S. K., “A nonlocal problem for a mixed-type equation whose order degenerates along the line of change of type”, Russian Math. (Iz. VUZ), 57:8 (2013), 49–56 | DOI | Zbl