Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2015_19_1_a3, author = {V. V. Napalkov and A. U. Mullabaeva}, title = {The multiple interpolation de {La} {Vall\'ee} {Poussin} problem}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {63--77}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a3/} }
TY - JOUR AU - V. V. Napalkov AU - A. U. Mullabaeva TI - The multiple interpolation de La Vall\'ee Poussin problem JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 63 EP - 77 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a3/ LA - ru ID - VSGTU_2015_19_1_a3 ER -
%0 Journal Article %A V. V. Napalkov %A A. U. Mullabaeva %T The multiple interpolation de La Vall\'ee Poussin problem %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2015 %P 63-77 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a3/ %G ru %F VSGTU_2015_19_1_a3
V. V. Napalkov; A. U. Mullabaeva. The multiple interpolation de La Vall\'ee Poussin problem. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 1, pp. 63-77. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a3/
[1] Mullabaeva A. U., Napalkov V. V., “Multiple interpolation de La Vallée Poussin problem”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 259–260 (In Russian)
[2] de La Vallée Poussin Ch. J., “Sur l'equation differentielle lineaire du second ordre. Determination d’une integrale par deux valeurs assignees. Extension aux equation d'ordre $n$”, J. Math. pures et appl., 8:2 (1929), 125–144 (In French) | Zbl
[3] Sansone J., Obyknovennye differentsial'nye uravneniia [Ordinary Differential Equations], In. lit., Moscow, 1953, 345 pp. (In Russian) | MR
[4] Pokornyi Yu. V., “Zeros of the Green's function for the de la Vallée-Poussin problem”, Sb. Math., 199:6 (2008), 891–921 | DOI | DOI | MR | Zbl
[5] Kiguradze I. T., “Conditions for non-oscillation of singular linear differential equations of second order”, Math. Notes, 6:5 (1969), 843–847 | DOI | MR | Zbl
[6] Chichkin E. S., “The non-oscillation problem for linear equations of fourth order”, Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 3, 248–250 (In Russian) | MR | Zbl
[7] Chichkin E. S., “On the non-oscillation of solutions of non-linear differential equations of third and fourth order”, Izv. Vyssh. Uchebn. Zaved. Mat., 1959, no. 5, 219–221 (In Russian) | MR | Zbl
[8] Levin A. Yu., “Non-oscillation of solutions of the equation $x^{(n)}+p_1(t)x^{(n-1)}+\dots+p_n(t)x=0$”, Russian Math. Surveys, 24:2 (1969), 43–99 | DOI | MR | Zbl | Zbl
[9] Pokornyi Yu. V., “A nonclassical de la Vallée–Poussin problem”, Differ. Equ., 14:6, 725–732 | MR | Zbl | Zbl
[10] Derr V. Ya., “A generalized la Vallée–Poussin problem”, Differ. Equ., 23:11 (1987), 1254–1263 | MR | Zbl | Zbl
[11] Derr V. Ya, “Nonoscillation of Solutions of a Linear Quasidifferential Equation”, Izvestiia Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta [Izv. Inst. Mat. Inform. Udmurt. Gos. Univ.], 1999, no. 1(16), 3–105 (In Russian)
[12] Napalkov V. V., Mullabaeva A. U., “On one class of differential operators and their application”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 1, 2014, 201–214 (In Russian) | MR
[13] Napalkov V. V., Mullabaeva A. U., “Interpolation problem in kernels of operators generated by generalized Bargmann–Fock spaces”, Dokl. Math., 89:1 (2014), 42–44 | DOI | MR | Zbl
[14] Napalkov V. V., Popenov S. V., “The holomorphic Cauchy problem for the convolution operator in analytically uniform spaces, and Fisher expansions”, Dokl. Math., 64:3 (2001), 330–332 | MR | Zbl
[15] Napalkov V. V., Nuyatov A. A., “The multipoint de la Vallée–Poussin problem for a convolution operator”, Sb. Math., 203:2 (2012), 224–233 | DOI | DOI | MR | Zbl
[16] Zabirova K. R., Napalkov V. V., “Dunkl convolution operators and their properties”, Dokl. Math., 87:2 (2013), 218–219 | DOI | MR | Zbl
[17] Zabirova K. R., Napalkov V. V., “The Dunkl convolution operators and multipoint de la Vallée–Poussin problem”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013), 70–81 (In Russian) | DOI
[18] Merzlyakov S. G., Popenov S. V., “Interpolation with multiplicity by series of exponentials in $H(\mathbb{C})$ with nodes on the real axis”, Ufa Math. Journal, 5:3 (2013), 127–140 | DOI
[19] Napalkov V. V., “Complex analysis and the Cauchy problem for convolution operators”, Proc. Steklov Inst. Math., 235 (2001), 158–161 | MR | Zbl
[20] Kantorovich L. V., Akilov G. P., Funktsional'nyi analiz v normirovanykh prostranstvakh [Functional analysis in normed spaces], Fizmatgiz, Moscow, 1959, 684 pp. (In Russian) | MR | Zbl
[21] Tkachenko V. A., “Spektralnaya teoriya v prostranstvakh analiticheskikh funktsionalov dlya operatorov, porozhdaemykh umnozheniem na nezavisimuyu peremennuyu”, Matem. sb., 112(154):3(7) (1980), 421–466 | MR | Zbl
[22] Shapiro H. S., “An Algebraic Theorem of E. Fischer, and the Holomorphic Goursat Problem”, Bull. London Math. Soc., 21:6 (1989), 513–537 | DOI | MR | Zbl
[23] Meril A., Struppa D. C., “Equivalence of Cauchy Problems for Entire and Exponential Type Functions”, Bull. London Math. Soc., 17:5 (1985), 469–473 | DOI | MR | Zbl
[24] Dieudonné J.; Schwartz L., “La dualité dans les espaces ($ F$) et ($ L F$)”, Ann. Inst. Fourier Grenoble, 1 (1949), 61–101 (In French) | DOI | MR | Zbl