The multiple interpolation de La Vall\'ee Poussin problem
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 1, pp. 63-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is concerned with the solving of multiple interpolation de La Vallée Poussin problem for generalized convolution operator. Particular attention is paid to the proving of the sequential sufficiency of the set of solutions of the generalized convolution operator characteristic equation. In the generalized Bargmann–Fock space the adjoint operator of multiplication by the variable $z$ is the generalized differential operator. Using this operator we introduce the generalized shift and generalized convolution operators. Applying the chain of equivalent assertions we obtain the fact that the multiple interpolation de La Vallée Poussin problem is solvable if and only if the composition of generalized convolution operator with multiplication by the fixed entire function $\psi(z)$ is surjective. Zeros of the function $\psi(z)$ are the nodes of interpolation. The surjectivity of composition of the generalized convolution operator with the multiplication comes down to the proof of the sequential sufficiency of the set of zeros of a generalized convolution operator characteristic function in the set of solutions of the generalized convolution operator with the characteristic function $\psi(z)$. In the proof of the sequential sufficiency it became necessary to consider the relation of eigenfunctions for different values of $\mu_i.$ The eigenfunction with great value of $\mu_i$ tends to infinity faster than eigenfunction with a lower value for $z$ tends to infinity. The derivative of the eigenfunction of higher order tends to infinity faster than lower-order derivatives with the same values of $\mu_i$. A significant role is played by the fact that the kernel of the generalized convolution operator with characteristic function $\psi(z)$ is a finite sum of its eigenfunction and its derivatives. Using the Fischer representation, Dieudonne–Schwartz theorem and Michael's theorem on the existence of a continuous right inverse we obtain that if the zeros of the characteristic function of a generalized convolution operator are located on the positive real axis in order of increasing then multiple interpolation de La Vallée Poussin problem is solvable in the interpolation nodes.
Keywords: generalized convolution operator, eigenfunctions of the generalized differentiation operator, Fischer representation, sequentially sufficient set
Mots-clés : de La Vallée Poussin problem, interpolation nodes.
@article{VSGTU_2015_19_1_a3,
     author = {V. V. Napalkov and A. U. Mullabaeva},
     title = {The multiple interpolation de {La} {Vall\'ee} {Poussin} problem},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {63--77},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a3/}
}
TY  - JOUR
AU  - V. V. Napalkov
AU  - A. U. Mullabaeva
TI  - The multiple interpolation de La Vall\'ee Poussin problem
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 63
EP  - 77
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a3/
LA  - ru
ID  - VSGTU_2015_19_1_a3
ER  - 
%0 Journal Article
%A V. V. Napalkov
%A A. U. Mullabaeva
%T The multiple interpolation de La Vall\'ee Poussin problem
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 63-77
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a3/
%G ru
%F VSGTU_2015_19_1_a3
V. V. Napalkov; A. U. Mullabaeva. The multiple interpolation de La Vall\'ee Poussin problem. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 1, pp. 63-77. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a3/

[1] Mullabaeva A. U., Napalkov V. V., “Multiple interpolation de La Vallée Poussin problem”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 259–260 (In Russian)

[2] de La Vallée Poussin Ch. J., “Sur l'equation differentielle lineaire du second ordre. Determination d’une integrale par deux valeurs assignees. Extension aux equation d'ordre $n$”, J. Math. pures et appl., 8:2 (1929), 125–144 (In French) | Zbl

[3] Sansone J., Obyknovennye differentsial'nye uravneniia [Ordinary Differential Equations], In. lit., Moscow, 1953, 345 pp. (In Russian) | MR

[4] Pokornyi Yu. V., “Zeros of the Green's function for the de la Vallée-Poussin problem”, Sb. Math., 199:6 (2008), 891–921 | DOI | DOI | MR | Zbl

[5] Kiguradze I. T., “Conditions for non-oscillation of singular linear differential equations of second order”, Math. Notes, 6:5 (1969), 843–847 | DOI | MR | Zbl

[6] Chichkin E. S., “The non-oscillation problem for linear equations of fourth order”, Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 3, 248–250 (In Russian) | MR | Zbl

[7] Chichkin E. S., “On the non-oscillation of solutions of non-linear differential equations of third and fourth order”, Izv. Vyssh. Uchebn. Zaved. Mat., 1959, no. 5, 219–221 (In Russian) | MR | Zbl

[8] Levin A. Yu., “Non-oscillation of solutions of the equation $x^{(n)}+p_1(t)x^{(n-1)}+\dots+p_n(t)x=0$”, Russian Math. Surveys, 24:2 (1969), 43–99 | DOI | MR | Zbl | Zbl

[9] Pokornyi Yu. V., “A nonclassical de la Vallée–Poussin problem”, Differ. Equ., 14:6, 725–732 | MR | Zbl | Zbl

[10] Derr V. Ya., “A generalized la Vallée–Poussin problem”, Differ. Equ., 23:11 (1987), 1254–1263 | MR | Zbl | Zbl

[11] Derr V. Ya, “Nonoscillation of Solutions of a Linear Quasidifferential Equation”, Izvestiia Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta [Izv. Inst. Mat. Inform. Udmurt. Gos. Univ.], 1999, no. 1(16), 3–105 (In Russian)

[12] Napalkov V. V., Mullabaeva A. U., “On one class of differential operators and their application”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 1, 2014, 201–214 (In Russian) | MR

[13] Napalkov V. V., Mullabaeva A. U., “Interpolation problem in kernels of operators generated by generalized Bargmann–Fock spaces”, Dokl. Math., 89:1 (2014), 42–44 | DOI | MR | Zbl

[14] Napalkov V. V., Popenov S. V., “The holomorphic Cauchy problem for the convolution operator in analytically uniform spaces, and Fisher expansions”, Dokl. Math., 64:3 (2001), 330–332 | MR | Zbl

[15] Napalkov V. V., Nuyatov A. A., “The multipoint de la Vallée–Poussin problem for a convolution operator”, Sb. Math., 203:2 (2012), 224–233 | DOI | DOI | MR | Zbl

[16] Zabirova K. R., Napalkov V. V., “Dunkl convolution operators and their properties”, Dokl. Math., 87:2 (2013), 218–219 | DOI | MR | Zbl

[17] Zabirova K. R., Napalkov V. V., “The Dunkl convolution operators and multipoint de la Vallée–Poussin problem”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013), 70–81 (In Russian) | DOI

[18] Merzlyakov S. G., Popenov S. V., “Interpolation with multiplicity by series of exponentials in $H(\mathbb{C})$ with nodes on the real axis”, Ufa Math. Journal, 5:3 (2013), 127–140 | DOI

[19] Napalkov V. V., “Complex analysis and the Cauchy problem for convolution operators”, Proc. Steklov Inst. Math., 235 (2001), 158–161 | MR | Zbl

[20] Kantorovich L. V., Akilov G. P., Funktsional'nyi analiz v normirovanykh prostranstvakh [Functional analysis in normed spaces], Fizmatgiz, Moscow, 1959, 684 pp. (In Russian) | MR | Zbl

[21] Tkachenko V. A., “Spektralnaya teoriya v prostranstvakh analiticheskikh funktsionalov dlya operatorov, porozhdaemykh umnozheniem na nezavisimuyu peremennuyu”, Matem. sb., 112(154):3(7) (1980), 421–466 | MR | Zbl

[22] Shapiro H. S., “An Algebraic Theorem of E. Fischer, and the Holomorphic Goursat Problem”, Bull. London Math. Soc., 21:6 (1989), 513–537 | DOI | MR | Zbl

[23] Meril A., Struppa D. C., “Equivalence of Cauchy Problems for Entire and Exponential Type Functions”, Bull. London Math. Soc., 17:5 (1985), 469–473 | DOI | MR | Zbl

[24] Dieudonné J.; Schwartz L., “La dualité dans les espaces ($ F$) et ($ L F$)”, Ann. Inst. Fourier Grenoble, 1 (1949), 61–101 (In French) | DOI | MR | Zbl