On the Dirichlet problem for an elliptic equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 1, pp. 19-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the concept of a generalized solution from the Sobolev space $ W_2 ^ 1 $ of the Dirichlet problem for a second order elliptic equation is not a generalization of the classical solution sensu stricto: not every continuous function on the domain boundary is a trace of some function from $ W_2 ^ 1$. The present work is dedicated to the memory of Valentin Petrovich Mikhailov, who proposed a generalization of both these concepts. In the Mikhailov's definition the boundary values of the solution are taken from the $ L_2 $; this definition extends naturally to the case of boundary functions from $ L_p$, $p> 1 $. Subsequently, the author of this work has shown that solutions have the property $ (n-1) $-dimensional continuity; $ n $ is a dimension of the space in which we consider the problem. This property is similar to the classical definition of uniform continuity, but traces of this function on the measures from a special class should be considered instead of values of the function at points. This class is a little more narrow than the class of Carleson measures. The trace of function on the measure is an element of $ L_p $ with respect to this measure. The property $ (n-1) $-dimensional continuity makes it possible to give another definition of the solution of the Dirichlet problem (a definition of $(n-1)$-dimensionally continuous solution), which is in the form close to the classical one. This definition does not require smoothness of the boundary. The Dirichlet problem in the Mikhailov's formulation and especially for the $(n-1)$-dimensionally continuous solution was studied insufficiently (in contrast to the cases of classical and generalized solutions). First of all, it refers to conditions on the right side of the equation, in which the Dirichlet problem is solvable. In this article the new results in this direction are presented. In addition, we discuss the conditions on the coefficients of the equation and the conditions on the boundary of a domain in which the problem is considered. The results about the solvability and about the boundary behavior of solutions are compared with the analogous theorems for classical and generalized solutions. Some unsolved problems arising from such comparison are discussed.
Mots-clés : elliptic equation
Keywords: Dirichlet problem, function space.
@article{VSGTU_2015_19_1_a1,
     author = {A. K. Gushchin},
     title = {On the {Dirichlet} problem for an elliptic equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {19--43},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a1/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - On the Dirichlet problem for an elliptic equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 19
EP  - 43
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a1/
LA  - ru
ID  - VSGTU_2015_19_1_a1
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T On the Dirichlet problem for an elliptic equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 19-43
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a1/
%G ru
%F VSGTU_2015_19_1_a1
A. K. Gushchin. On the Dirichlet problem for an elliptic equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 1, pp. 19-43. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a1/

[1] Gushchin A. K., “On the Dirichlet Problem for an Elliptic Equation”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 136 (In Russian)

[2] Mikhaylov V. P., “The Dirichlet problem for a second order elliptic equation”, Differ. Equ., 12:10 (1976), 1320–1329 | MR

[3] Gushchin A. K., “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl

[4] Carleson L., “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80:4 (1958), 921–930 | DOI | MR | Zbl

[5] Carleson L., “Interpolation by bounded analytic functions and the corona problem”, Ann. Math., 76:3 (1962), 547–559 | DOI | MR | Zbl

[6] Hörmander L., “$L^p$-estimates for (pluri-) subharmonic functions”, Math. Scand., 20 (1967), 65–78 http://www.mscand.dk/article/view/10821/8842 | MR | Zbl

[7] Nikol'skiy N. K., Lektsii ob operatore sdviga [Lectures on the shift operator], Nauka, Moscow, 1980 (In Russian) | MR

[8] Garnett J. B., Bounded analytic functions, Pure and Applied Mathematics, 96, Academic Press, New York etc., 1981, xvi+467 pp. ; Garnett J. B., Bounded analytic functions, Graduate Texts in Mathematics, 236, Springer, New York, 2007, 433 pp. | DOI | MR | Zbl | DOI | MR

[9] Liapounoff A., “Sur certaines questions qui se rattachent au problème de Dirichlet”, Journ. de Math. (5), 4 (1898), 241–311 | Zbl

[10] Poincaré H., “La méthode de Neumann et le problème de Dirichlet”, Acta Mathematica, 20:1 (1897), 59–142 | DOI | MR

[11] Korn A., Lehrbuch der Potentialtheorie. Allgemeine Theorie des Potentials und der Potentialfunctionen im Raume, Ferd. Dümmler, Berlin, 1899, xiv+417 pp. | Zbl

[12] Stekloff W., “Sur les problèmes fondamentaux de la Physique mathématique”, C. R. Acad. Sci., Paris, 128 (1899), 588–591 | Zbl

[13] Stekloff W., “Les méthodes générales pour résoudre les problm̀es fondamentaux de la physique mathématique”, Annales de la Faculté des Sciences de Toulouse, 2 série [Toulouse Ann. (2)], 2 (1900), 207–272 | DOI | MR | Zbl

[14] Zaremba S., “Sur la thórie de l'équation de Laplace et les méthodes de Neumann et de Robin”, Bulletin de l'Académie des Sciences de Cracovie [Krakauer Anzeiger], 1901, 171–189 | Zbl

[15] Steklov V. A., Osnovnye zadachi matematicheskoi fiziki [Fundamental problems in mathematical physics] Second edition, ed. V. S. Vladimirov, Nauka, Moscow, 1983 (In Russian) | MR

[16] Hölder O., Beiträge zur potentialtheorie, Inaugural-Dissertation zur Erlangung der Doctorwürde der naturwissenschaftlichen Facultät zu Tübingen, Druck J. B. Metzlersche Buchdruckerei, Stuttgart, 1882, iv+71 pp. Internet Archive Identifier: bietrgezurpoten00hlgoog

[17] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berlin etc., 1983, xiii+513 pp. | DOI | MR | Zbl

[18] Lebesgue H., “Sur le problème de Dirichlet”, C. R. Acad. Sci., Paris, 144 (1907), 316–318, 622–623 | Zbl

[19] Gunther N. M., Teoriia potentsiala i ee primeneniia k osnovnym zadacham matematicheskoi fiziki [Theory of the potential and its application to the basic problems of mathematical physics], Gostekhizdat, Moscow, 1953 (In Russian) | MR

[20] Perron O., “Eine neue Behandlung der ersten Randwertaufgabe für $\Delta u = 0$”, Math. Z., 18 (1923), 42–54 | DOI | MR | Zbl

[21] Petrovsky I. G., Lectures on partial differential equations, Interscience, New York, 1954, x+245 pp. | Zbl

[22] Wiener N., “The Dirichlet problem”, Mass. J. of Math., 3 (1924), 129–146 | Zbl

[23] Keldysh M. V., “On the solubility and the stability of Dirichlet's problem”, Uspekhi Mat. Nauk, 1941, no. 8, 171–231 (In Russian) | MR | Zbl

[24] Korn A., Über Minimalflächen, deren Randkurven wenig von ebenen Kurven abweichen, Königl. Akademie der Wissenschaften, Berlin, 1909, 37 pp. | Zbl

[25] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniia ellipticheskogo tipa [Linear and quasilinear equations of elliptic type], Nauka, Moscow, 1973 (In Russian) | MR

[26] Hopf E., “Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus”, Sitz. Ber. Preuss Akad. Wissensch. Berlin. Math.-Phys. Kl. 19, 1927, 147–152 ; Hopf E., “Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus”, Selected works of Eberhard Hopf. With commentaries, eds. Cathleen S. Morawetz, James B. Serrin and Yakov G. Sinai, American Mathematical Society, Providence, RI, 2002, 3–8 | Zbl | Zbl

[27] Korn A., “Zwei Anwendungen der Methode der sukzessiven Annäherungen”, Mathematische Abhandlungen Hermann Amandus Schwarz: zu seinem fünfzigjährigen Doktorjubiläum am 6. August 1914 (German Edition), Schwarz Festschrift, Berlin, 1914, 215–229 | Zbl

[28] Giraud G., “Sur le problème de Dirichlet généralisé (deuxième mémoire)”, Ann. Sci. Éc. Norm. Supér., III. Ser., 46 (1929), 131–245 | MR | Zbl

[29] Giraud G., “Sur certains problèmes non linéaires de Neumann et sur certains problèmes non linéaires mixtes”, Ann. Sci. Éc. Norm. Supér., III. Ser., 49 (1932), 1–104 | MR | Zbl

[30] Giraud G., “Sur certains problèmes non linéaires de Neumann et sur certains problèmes non linéaires mixtes”, Ann. Sci. Éc. Norm. Supér., III. Ser., 49 (1932), 245–309 | MR | Zbl

[31] Schauder J., “Über lineare elliptische Differentialgleichungen zweiter Ordnung”, Math. Z., 38 (1934), 257–282 | DOI | MR | Zbl

[32] Schauder J., “Numerische Abschätzungen in elliptischen linearen Differentialgleichungen”, Stud. Math., 5 (1934), 34–42 | Zbl

[33] Hopf E., “Über den funktionalen, insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen zweiter Ordnung”, Math. Z., 34 (1931), 194–233 | DOI | MR | Zbl

[34] Oleinik O. A., “On the Dirichlet problem for equations of elliptic type”, Mat. Sb. (N.S.), 24(66):1 (1949), 3–14 (In Russian) | MR | Zbl

[35] Sobolev S. L.: On some estimates relating to families of functions having derivatives that are square integrable, Dokl. Akad. Nauk SSSR, 1 (1936), 267–270 (In Russian)

[36] Soboleff S., “Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales”, Rec. Math. [Mat. Sbornik] N.S., 1(43):1 (1936), 39–72 | Zbl

[37] S. Soboleff, “Sur un théorème d'analyse fonctionnelle”, Amer. Math. Soc. Transl., 2(34) (1963), 39–68 | Zbl

[38] Sobolev S. L., Some Applications of Functional Analysis in Mathematical Physics, Translations of Mathematical Monographs, 90, American Mathematical Society, Providence, RI, 1991, vii+286 pp. | Zbl

[39] Hilbert D., “Sur le principe de Dirichlet”, Nouv. Ann., 3:19 (1900), 337–344 (In French) | MR | Zbl | Zbl

[40] Vladimirov V. S., Obobshchennye funktsii v matematicheskoi fizike [Generalized functions in mathematical physics], Nauka, Moscow, 1979 (In Russian) | MR

[41] Vladimirov V. S., Uravneniia matematicheskoi fiziki [The equations of mathematical physics], Nauka, Moscow, 1981 (In Russian) | MR

[42] Besov O. V., Il'in V. P., Nikol'skii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniia [Approximation of functions of several variables and imbedding theorems], Nauka, Moscow, 1969 (In Russian) | MR

[43] Maz'ja V. G., Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin etc., 1985, xix+486 pp. | DOI | MR | Zbl

[44] Mikhaylov V. P., Differentsial'nye uravneniia v chastnykh proizvodnykh [Partial differential equations], Nauka, Moscow, 1983 (In Russian) | MR

[45] Mikhailov V. P., Gushchin A. K., “Additional chapters of course “Equations of Mathematical Physics””, Lekts. Kursy NOC, 7, Steklov Math. Inst., RAS, Moscow, 2007, 3–144 (In Russian) | DOI | Zbl

[46] Rellich F., “Ein Satz über mittlere Konvergenz”, Nachr. Akad. Wiss. Göttingen. Math.-Phys., 31 (1930), 30–35 | Zbl

[47] Kondrashov V. I., “On Certain Properties of Functions from Spaces $L_p$”, Dokl. Akad. Nauk SSSR, 48 (1945), 535–538 (In Russian) | MR

[48] de Giorgi E., “On the differentiability and the analyticity of extremals of regular multiple integrals”, Selected papers, eds. L. Ambrosio, G. Dal Maso, M. Forti, M. Miranda, S. Spagnolo, Springer-Verlag, Berlin, New York, 2006, 149–166 | MR | MR | Zbl | Zbl

[49] Nash J., “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80:4 (1958), 931–954 | DOI | MR | Zbl

[50] Moser J., “A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Comm. Pure Appl. Math., 13:3 (1960), 457–468 | DOI | MR | Zbl

[51] Gushchin A. K., “On the Interior Smoothness of Solutions to Second-Order Elliptic Equations”, Siberian Math. J., 46:5 (2005), 826–840 | DOI | MR | Zbl

[52] Alkhutov Yu. A., Kondrat?ev V. A., “Solvability of the Dirichlet problem for second-order elliptic equations in a convex domain”, Differ. Equ., 28:5 (1992), 650–662 | MR

[53] Alkhutov Yu. A., “$L_p$-estimates of the solution of the Dirichlet problem for second-order elliptic equations”, Sb. Math., 189:1 (1998), 1–17 | DOI | DOI | MR | Zbl

[54] Kondratiev V. A., Landis E. M., “Qualitative theory of second order linear partial differential equations”, Partial differential equations – 3, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 32, VINITI, Moscow, 1988, 99–215 (In Russian) | MR | Zbl

[55] Nečas J., “On the solutions of second order elliptic partial differential equations with unbounded Dirichlet integral”, Czechosl. Mathem. Journal, 10:2 (1960), 283–298 (In Russian) | MR | Zbl

[56] Gushchin A. K., Mikhailov V. P., “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR-Sb., 73:1 (1992), 171–194 | DOI | MR | Zbl

[57] Riesz F., “Über die Randwerte einer analytischen Funktion”, Math. Z., 18:1 (1923), 87–95 | DOI | MR | Zbl

[58] Littlewood J., Paley R., “Theorems on Fourier Series and Power Series”, J. Lond. Math. Soc., s1-6:3 (1931), 230–233 | DOI | MR | Zbl

[59] Littlewood J., Paley R., “Theorems on Fourier Series and Power Series(II)”, Proc. Lond. Math. Soc., s2-42:1 (1936), 52–89 | DOI | MR

[60] Littlewood J., Paley R., “Theorems on Fourier Series and Power Series(III)”, Proc. Lond. Math. Soc., s2-43:2 (1937), 105–126 | DOI | MR | Zbl

[61] Petrushko I. M., “On boundary values in $\mathscr L_p$, $p>1$, of solutions of elliptic equations in domains with a Lyapunov boundary”, Math. USSR-Sb., 48:2 (1984), 565–585 | DOI | MR | Zbl | Zbl

[62] Gushchin A. K., “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Sb. Math., 203:1 (2012), 1–27 | DOI | DOI | MR | Zbl

[63] Privalov I. I., Integral Cauchy [The Cauchy integral], Saratov, 1919, 94 pp. (In Russian)

[64] Seeley R. T., “Singular integrals and boundary value problems”, Amer. J. Math., 88:4 (1966), 781–809 | DOI | MR | Zbl

[65] Guschin A. K., “$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem”, Theoret. and Math. Phys., 174:2 (2013), 209–219 | DOI | DOI | MR | Zbl

[66] Gushchin A. K., “A strengthening of the interior Hölder continuity property for solutions of the Dirichlet problem for a second-order elliptic equation”, Theoret. and Math. Phys., 157:3 (2008), 1655–1670 | DOI | DOI | MR | Zbl

[67] Dumanyan V. Zh., “Solvability of the Dirichlet problem for a general second-order elliptic equation”, Sb. Math., 202:7 (2011), 1001–1020 | DOI | DOI | MR | Zbl

[68] Dumanyan V. Zh., “Solvability of the Dirichlet problem for second-order elliptic equations”, Theoret. and Math. Phys., 180:2 (2014), 917–931 | DOI | DOI | Zbl