On Strong and Weak Discontinuities of the Coupled Thermomechanical Field in Micropolar Thermoelastic Type-II Continua
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 85-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present study is devoted to problem of propagating surfaces of weak and strong discontinuities of translational displacements, microrotations and temperature in micropolar (MP) thermoelastic (TE) type-II continua. First part of the paper is concerned to discussions of the propagating surfaces of strong discontinuities of field variables in type-II MPTE continua. Constitutive relations for hyperbolic thermoelastic type-II micropolar continuum is derived by the field theory. The special form of the first variation of the action integral is used in order to obtain $4$-covariant jump conditions on wave surfaces. Three-dimensional form of the jump conditions on the surface of a strong discontinuity of thermoelastic field are derived from $4$-covariant form. Problems of propagation of weak discontinuities in type-II MPTE continua are discussed too. Geometrical and kinematical compatibility conditions due to Hadamard and Thomas are used to study possible wave surfaces of weak discontinuities. It is shown that the surfaces of weak discontinuities can propagate exist without weak discontinuities of the temperature field.
Keywords: micropolar thermoelasticity, type-II continuum, weak discontinuity, strong discontinuity, shock wave, longitudinal wave, compatibility condition, jump.
Mots-clés : transverse wave
@article{VSGTU_2014_4_a7,
     author = {E. V. Murashkin and Yu. N. Radayev},
     title = {On {Strong} and {Weak} {Discontinuities} of the {Coupled} {Thermomechanical} {Field} in {Micropolar} {Thermoelastic} {Type-II} {Continua}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {85--97},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a7/}
}
TY  - JOUR
AU  - E. V. Murashkin
AU  - Yu. N. Radayev
TI  - On Strong and Weak Discontinuities of the Coupled Thermomechanical Field in Micropolar Thermoelastic Type-II Continua
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 85
EP  - 97
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a7/
LA  - ru
ID  - VSGTU_2014_4_a7
ER  - 
%0 Journal Article
%A E. V. Murashkin
%A Yu. N. Radayev
%T On Strong and Weak Discontinuities of the Coupled Thermomechanical Field in Micropolar Thermoelastic Type-II Continua
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 85-97
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a7/
%G ru
%F VSGTU_2014_4_a7
E. V. Murashkin; Yu. N. Radayev. On Strong and Weak Discontinuities of the Coupled Thermomechanical Field in Micropolar Thermoelastic Type-II Continua. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 85-97. http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a7/

[1] Murashkin E. V., Radayev Yu. N., “On Strong and Weak Discontinuities of the Coupled Thermomechanical Field in Micropolar Thermoelastic Type-II Continua”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 261–262 (In Russian)

[2] Kovalev V. A., Radayev Yu. N., Volnovye zadachi teorii polia i termomekhanika [Wave problems of the field theory and thermomechanic], Saratov Univ. Publ., Saratov, 2010, 328 pp. (In Russian)

[3] Cosserat E. et F., Théorie des corps déformables, Librairie Scientifique A. Hermann et Fils, Paris, 1909, 226 pp.

[4] Toupin R. A., “Theories of elasticity with couple-stress”, Arch. Rational Mech. Anal., 17:2 (1964), 85–112 | DOI | MR | Zbl

[5] Green A. E., Naghdi P. M., “On undamped heat waves in an elastic solid”, Journal of Thermal Stresses, 15:2 (1992), 253–264 | DOI | MR

[6] Green A. E., Naghdi P. M., “Thermoelasticity without energy dissipation”, J. Elasticity, 31:3 (1993), 189–208 | DOI | MR | Zbl

[7] Thomas T., Plastic flow and fracture in solids, Academic Press, New York, 1961, ix+267 pp. | MR | Zbl

[8] Rankine W. J. M., “On the thermodynamic theory of waves of finite longitudinal disturbance”, Proceedings of the Royal Society of London, 18:114–122 (1869), 80–83 ; Rankine W. J. M., “On the thermodynamic theory of waves of finite longitudinal disturbance”, Philosophical Transactions of the Royal Society of London, 160, 277–288 ; Rankine W. J. M., “On the thermodynamic theory of waves of finite longitudinal disturbance”, Classic Papers in Shock Compression Science, Shock Wave and High Pressure Phenomena, 1998, 133–148 | DOI | DOI | DOI | MR

[9] Hugoniot P. H., “Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits (première partie)”, Journal de l'École Polytechnique, 57 (1887), 3–97 (In French)

[10] Kovalev V. A., Murashkin E. V., Radayev Yu. N., “A mathematical theory of plane harmonic coupled thermoelastic waves in type-I micropolar continua”, Izv. Saratov. Univ. (N.S.), Ser. Math. Mech. Inform., 14:1 (2014), 77–87 (In Russian) | MR | Zbl

[11] Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, viii+383 pp. | MR | Zbl