Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_4_a6, author = {A. D. Moskalik}, title = {Approximate analytical solution of~the~problem for~the~tube with~elliptic outer contour under~steady-state creep condition}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {65--84}, publisher = {mathdoc}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a6/} }
TY - JOUR AU - A. D. Moskalik TI - Approximate analytical solution of~the~problem for~the~tube with~elliptic outer contour under~steady-state creep condition JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 65 EP - 84 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a6/ LA - ru ID - VSGTU_2014_4_a6 ER -
%0 Journal Article %A A. D. Moskalik %T Approximate analytical solution of~the~problem for~the~tube with~elliptic outer contour under~steady-state creep condition %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 65-84 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a6/ %G ru %F VSGTU_2014_4_a6
A. D. Moskalik. Approximate analytical solution of~the~problem for~the~tube with~elliptic outer contour under~steady-state creep condition. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 65-84. http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a6/
[1] Kachanov L. M., Teoriia polzuchesti [Creep theory], Fizmatgiz, Moscow, 1960, 455 pp. (In Russian)
[2] Radchenko V. P., Bashkinova E. V., “Solution of the boundary value problems for steady creep in polar coordinates by the perturbation method”, Vestn. Sam. gos. tekhn. un-ta. Ser. Tekhn. nauki, 1998, no. 5, 86–91 (In Russian)
[3] Bashkinova E. V., “Solution of the value boundary problem of steady creep for non-axisymmetric thick-walled tube”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 16, 2002, 105–110 (In Russian) | DOI
[4] Moskalik A. D., “The application of perturbation method to problem of misaligned tube in conditions of steady-state creep”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 4(33), 76–85 (In Russian) | DOI | Zbl
[5] Hill R., Hutchinson J. W., “Bifurcation phenomena in the plane tension test”, J. Mech. Phys. solids, 23 (1975), 239–264 | DOI | MR | Zbl
[6] Stören S., Rice J. R., “Localized necking in thin sheets”, J. Mech. Phys. solids, 23:6 (1975), 421–441 | DOI | Zbl
[7] Hutchinson J. W., Neale K. W., “Influence of strain-rate sensitivity on necking under uniaxial tension”, Acta Metallurgica, 25:8 (1977), 839–846 | DOI
[8] Keller I. É., “Self-similar shapes of the free boundary of a nonlinear-viscous band under uniaxial tension”, J. Appl. Mech. Tech. Phys., 51:1 (2010), 99–105 | DOI | MR | Zbl
[9] Popov N. N., Radchenko V. P., “Analytical solution of the stochastic steady-state creep boundary value problem for a thick-walled tube”, J. Appl. Math. Mech., 76:6 (2012), 738–744 | DOI | MR | Zbl
[10] Dolzhkovoi A. A., Popov N. N., “Solution of the nonlinear stochastic creep problem for a thick-walled tube by method of small parameter”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2002, no. 16, 84–89 (In Russian) | DOI
[11] Popov N. N., Isutkina V. N., “Construction of an Analytical Solution of a Two-Dimensional Stochastic Problem of the Steady Creep for a Thick-Walled Pipe”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2007, no. 2(15), 57–61 (In Russian) | DOI
[12] Dolzhkovoi A. A., Popov N. N., Radchenko V. P., “Solution of the stochastic boundary-value problem of steady-state creep for a thick-walled tube using the small-parameter method”, J. Appl. Mech. Tech. Phys., 47:1 (2006), 134–142 | DOI
[13] Kovalenko L. V., Popov N. N., Radchenko V. P., “Solution of the plane stochastic creep boundary value problem”, J. Appl. Math. Mech., 73:6 (2009), 727–733 | DOI | MR | Zbl
[14] Popov N. N., Samarin Yu. P., “Stress fields close to the boundary of a stochastically inhomogeneous half-plane during creep”, J. Appl. Mech. Tech. Phys., 29:1 (1988), 149–154 | DOI | MR
[15] Ivlev D. D., Ershov L. V., Metod vozmushchenii v teorii uprugoplasticheskogo tela [Perturbation Method in the Theory of an Elastic-Plastic Body], Nauka, M., 1978, 208 pp. (In Russian)
[16] Kerzhaev A. P., “Elastoplastic state of the thin annular plate in the presence of translational anisotropy under uniform tension”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2012, no. 2(12), 174–179 (In Russian)
[17] Fominykh S. O., “Elastoplastic state of the thick-walled pipe by reacting the different types of plastic anisotropy”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2011, no. 1(9), 201–2016 (In Russian) | MR
[18] Nikitin A. V., Tikhonov S. V., “Limit condition anisotropic multilayer translationnally thick-walled pipes under internal pressure”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2014, no. 1(19), 88–94 (In Russian) | MR
[19] Kul'pina T. A., “Anisotropic eccentric tube with a compressible material”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2010, no. 1(65), 46–50 (In Russian)
[20] Pavlova T. N., “On the displacements determination in the stress-strain state problem for a thin plate with an elliptic hole”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2010, no. 1(65), 64–69 (In Russian)
[21] Yardykova N. A., The elastic-plastic state of space weakened cylindrical cavity under the action of pressure, torsional and longitudinal shear forces, Cand. Phys. Math. Sci. Dissertation: 01.02.04, Cheboksary, 2006, 73 pp. (In Russian)
[22] Mirsalimov V. M., Neodnomernye uprugoplasticheskie zadachi [Multidimensional elastic-plastic problems], Nauka, Moscow, 1987, 256 pp. (In Russian) | Zbl
[23] Nikitenko A. F., Polzuchest' i dlitel'naia prochnost' metallicheskikh materialov [Creep and Long-Term Strength of Metal Materials], Novosibirsk State University of Architecture and Civil Engineering, Novosibirsk, 1997, 278 pp. (In Russian)
[24] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela [Mechanics of deformable solids], Nauka, Moscow, 1979, 744 pp. (In Russian)
[25] Elsgolts L., Differential Equations And The Calculus Of Variations, Mir Publ., Moscow, 1977, 440 pp. ark: /13960/t03z0n280 | MR | MR
[26] Malinin N. N., Prikladnaia teoriia plastichnosti i polzuchesti [Applied Theory of Plasticity and Creep], Mashinostroenie, Moscow, 1975, 400 pp. (In Russian)
[27] Radchenko V. P., Saushkin M. N., Polzuchest' i relaksatsiia ostatochnykh napriazhenii v uprochnennykh konstruktsiiakh [Creep and Relaxation of Residual Stresses in Hardened Structures], Mashinostroenie-1, Moscow, 2005, 226 pp. (In Russian)