Approximate analytical solution of~the~problem for~the~tube with~elliptic outer contour under~steady-state creep condition
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 65-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary value problem of steady-state creep for thick-walled outer elliptic contour's tube under internal pressure is considered. The approximate analytical solution of this problem for the state of plane deformation by the method of small parameter including the second approach is under construction. The hypothesis of incompressibility of material for creep strain is used. As a small parameter the value of flattening factor of the ellipse for external contour is used. Analysis of analytical solution is executed depending on the steady-state creep nonlinearity parameter and flattening factor of ellipse that is ratio of the difference of the semi-major and semi-minor axis to the semi-major axis which is outer radii of the unperturbed thick-walled tube. It is shown that with increasing of value of flattening factor to $0.1$ of outer radii of tube tangential stresses in weakest section at $\theta=\pi/2$ increase by $1.7$$1.8$ times. The results of computations are presented in tabular and graphic form.
Mots-clés : elliptic outer contour of tube
Keywords: steady-state creep, approximate analytical solution, small parameter method, first and second approximation.
@article{VSGTU_2014_4_a6,
     author = {A. D. Moskalik},
     title = {Approximate analytical solution of~the~problem for~the~tube with~elliptic outer contour under~steady-state creep condition},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {65--84},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a6/}
}
TY  - JOUR
AU  - A. D. Moskalik
TI  - Approximate analytical solution of~the~problem for~the~tube with~elliptic outer contour under~steady-state creep condition
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 65
EP  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a6/
LA  - ru
ID  - VSGTU_2014_4_a6
ER  - 
%0 Journal Article
%A A. D. Moskalik
%T Approximate analytical solution of~the~problem for~the~tube with~elliptic outer contour under~steady-state creep condition
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 65-84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a6/
%G ru
%F VSGTU_2014_4_a6
A. D. Moskalik. Approximate analytical solution of~the~problem for~the~tube with~elliptic outer contour under~steady-state creep condition. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 65-84. http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a6/

[1] Kachanov L. M., Teoriia polzuchesti [Creep theory], Fizmatgiz, Moscow, 1960, 455 pp. (In Russian)

[2] Radchenko V. P., Bashkinova E. V., “Solution of the boundary value problems for steady creep in polar coordinates by the perturbation method”, Vestn. Sam. gos. tekhn. un-ta. Ser. Tekhn. nauki, 1998, no. 5, 86–91 (In Russian)

[3] Bashkinova E. V., “Solution of the value boundary problem of steady creep for non-axisymmetric thick-walled tube”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 16, 2002, 105–110 (In Russian) | DOI

[4] Moskalik A. D., “The application of perturbation method to problem of misaligned tube in conditions of steady-state creep”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 4(33), 76–85 (In Russian) | DOI | Zbl

[5] Hill R., Hutchinson J. W., “Bifurcation phenomena in the plane tension test”, J. Mech. Phys. solids, 23 (1975), 239–264 | DOI | MR | Zbl

[6] Stören S., Rice J. R., “Localized necking in thin sheets”, J. Mech. Phys. solids, 23:6 (1975), 421–441 | DOI | Zbl

[7] Hutchinson J. W., Neale K. W., “Influence of strain-rate sensitivity on necking under uniaxial tension”, Acta Metallurgica, 25:8 (1977), 839–846 | DOI

[8] Keller I. É., “Self-similar shapes of the free boundary of a nonlinear-viscous band under uniaxial tension”, J. Appl. Mech. Tech. Phys., 51:1 (2010), 99–105 | DOI | MR | Zbl

[9] Popov N. N., Radchenko V. P., “Analytical solution of the stochastic steady-state creep boundary value problem for a thick-walled tube”, J. Appl. Math. Mech., 76:6 (2012), 738–744 | DOI | MR | Zbl

[10] Dolzhkovoi A. A., Popov N. N., “Solution of the nonlinear stochastic creep problem for a thick-walled tube by method of small parameter”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2002, no. 16, 84–89 (In Russian) | DOI

[11] Popov N. N., Isutkina V. N., “Construction of an Analytical Solution of a Two-Dimensional Stochastic Problem of the Steady Creep for a Thick-Walled Pipe”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2007, no. 2(15), 57–61 (In Russian) | DOI

[12] Dolzhkovoi A. A., Popov N. N., Radchenko V. P., “Solution of the stochastic boundary-value problem of steady-state creep for a thick-walled tube using the small-parameter method”, J. Appl. Mech. Tech. Phys., 47:1 (2006), 134–142 | DOI

[13] Kovalenko L. V., Popov N. N., Radchenko V. P., “Solution of the plane stochastic creep boundary value problem”, J. Appl. Math. Mech., 73:6 (2009), 727–733 | DOI | MR | Zbl

[14] Popov N. N., Samarin Yu. P., “Stress fields close to the boundary of a stochastically inhomogeneous half-plane during creep”, J. Appl. Mech. Tech. Phys., 29:1 (1988), 149–154 | DOI | MR

[15] Ivlev D. D., Ershov L. V., Metod vozmushchenii v teorii uprugoplasticheskogo tela [Perturbation Method in the Theory of an Elastic-Plastic Body], Nauka, M., 1978, 208 pp. (In Russian)

[16] Kerzhaev A. P., “Elastoplastic state of the thin annular plate in the presence of translational anisotropy under uniform tension”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2012, no. 2(12), 174–179 (In Russian)

[17] Fominykh S. O., “Elastoplastic state of the thick-walled pipe by reacting the different types of plastic anisotropy”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2011, no. 1(9), 201–2016 (In Russian) | MR

[18] Nikitin A. V., Tikhonov S. V., “Limit condition anisotropic multilayer translationnally thick-walled pipes under internal pressure”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2014, no. 1(19), 88–94 (In Russian) | MR

[19] Kul'pina T. A., “Anisotropic eccentric tube with a compressible material”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2010, no. 1(65), 46–50 (In Russian)

[20] Pavlova T. N., “On the displacements determination in the stress-strain state problem for a thin plate with an elliptic hole”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2010, no. 1(65), 64–69 (In Russian)

[21] Yardykova N. A., The elastic-plastic state of space weakened cylindrical cavity under the action of pressure, torsional and longitudinal shear forces, Cand. Phys. Math. Sci. Dissertation: 01.02.04, Cheboksary, 2006, 73 pp. (In Russian)

[22] Mirsalimov V. M., Neodnomernye uprugoplasticheskie zadachi [Multidimensional elastic-plastic problems], Nauka, Moscow, 1987, 256 pp. (In Russian) | Zbl

[23] Nikitenko A. F., Polzuchest' i dlitel'naia prochnost' metallicheskikh materialov [Creep and Long-Term Strength of Metal Materials], Novosibirsk State University of Architecture and Civil Engineering, Novosibirsk, 1997, 278 pp. (In Russian)

[24] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela [Mechanics of deformable solids], Nauka, Moscow, 1979, 744 pp. (In Russian)

[25] Elsgolts L., Differential Equations And The Calculus Of Variations, Mir Publ., Moscow, 1977, 440 pp. ark: /13960/t03z0n280 | MR | MR

[26] Malinin N. N., Prikladnaia teoriia plastichnosti i polzuchesti [Applied Theory of Plasticity and Creep], Mashinostroenie, Moscow, 1975, 400 pp. (In Russian)

[27] Radchenko V. P., Saushkin M. N., Polzuchest' i relaksatsiia ostatochnykh napriazhenii v uprochnennykh konstruktsiiakh [Creep and Relaxation of Residual Stresses in Hardened Structures], Mashinostroenie-1, Moscow, 2005, 226 pp. (In Russian)