Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_4_a5, author = {R. V. Ardazishvili and M. V. Wilde and L. Yu. Kossovich}, title = {Three-dimensional surface wave in half-space and edge waves in plates with mixed boundary conditions on the front edge}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {53--64}, publisher = {mathdoc}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a5/} }
TY - JOUR AU - R. V. Ardazishvili AU - M. V. Wilde AU - L. Yu. Kossovich TI - Three-dimensional surface wave in half-space and edge waves in plates with mixed boundary conditions on the front edge JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 53 EP - 64 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a5/ LA - ru ID - VSGTU_2014_4_a5 ER -
%0 Journal Article %A R. V. Ardazishvili %A M. V. Wilde %A L. Yu. Kossovich %T Three-dimensional surface wave in half-space and edge waves in plates with mixed boundary conditions on the front edge %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 53-64 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a5/ %G ru %F VSGTU_2014_4_a5
R. V. Ardazishvili; M. V. Wilde; L. Yu. Kossovich. Three-dimensional surface wave in half-space and edge waves in plates with mixed boundary conditions on the front edge. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 53-64. http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a5/
[1] Rayleigh J., “On waves propagated along the surface of an elastic solid”, Proc. Lond. Math. Soc., s1-17:1 (1885), 4–11 | DOI | Zbl
[2] Viktorov I. A., “Types of acoustic surface waves in solids (review)”, Sov. Phys. Acoust., 25:1 (1979), 1–9 | MR
[3] Destrade M., Scott N. H., “Surface waves in a deformed isotropic hyperelastic material subject to an isotropic internal constraint”, Wave Motion, 40:4 (2004), 347–357 | DOI | MR | Zbl
[4] Dai H. H., Kaplunov J., Prikazchikov D. A., “A long-wave model for the surface elastic wave in a coated half-space”, Proc. R. Soc. A, 466 (2010), 3097–3116 | DOI | MR | Zbl
[5] Eduardo Godoy, Mario Durán, Jean-Claude Nédélec, “On the existence of surface waves in an elastic half-space with impedance boundary conditions”, Wave Motion, 49:6 (2012), 585–594 | DOI | MR | Zbl
[6] Stan Chiri{ţ}{ă}, Michele Ciarletta, Vincenzo Tibullo, “Rayleigh Surface Waves on a Kelvin-Voigt Viscoelastic Half-Space”, Journal of Elasticity, 115:1 (2013), 61–76 | DOI | MR
[7] Inder Singh Gupta, “Propagation of Rayleigh Waves in a Prestressed Layer over a Prestressed Halfspace”, Frontiers in Geotechnical Engineering (FGE), 2:1 (2013), 16–22 https://archive.org/details/FGE009
[8] Baljeet Singh, “Propagation of Rayleigh Wave in a Thermoelastic Solid Half-Space with Microtemperatures”, International Journal of Geophysics, 2014 (2014), 1–6 | DOI
[9] Konenkov Y. K., “A Rayleigh-type flexural wave”, Soviet Acoust. Physics, 6:1 (1960), 122–123 | MR
[10] Belubekian M. V., Gulgazaryan G. R., Saakian A. V., “The waves of rayleighs type in semi-infinite clossed circuliar cilindrical shells”, Izv. NAN Armenii, Mekhanika [Mechanics. Proceedings of National Academy of Sciences of Armenia], 50:3–4 (1997), 49–55 (In Russian) | MR
[11] Kaplunov J. D., Kossovich L. Yu., Wilde M. V., “Free localized vibrations of a semi-infinite cylindrical shell”, J. Acoust. Soc. Am., 107:3 (2000), 1383–1393 | DOI
[12] Kaplunov J. D., Wilde M. V., “Edge and interfacial vibrations in elastic shells of revolution”, ZAMP, 51:4 (2000), 530–549 | DOI | MR | Zbl
[13] Fu Y. B., Brookes D. W., “Edge waves in asymmetrically laminated plates”, Journal of the Mechanics and Physics of Solids, 54:1 (2006), 1–21 | DOI | MR | Zbl
[14] Piliposian G. T., Belubekyan M. V., Ghazaryan K. B., “Localized bending waves in a transversely isotropic plate”, Journal of Sound and Vibration, 329:17 (2010), 3596–3605 | DOI
[15] Krushynska A. A., “Flexural edge waves in semi-infinite elastic plates”, Journal of Sound and Vibration, 330:9 (2011), 1964–1976 | DOI
[16] Fu Y. B., Kaplunov J., “Analysis of localized edge vibrations of cylindrical shells using the Stroh formalism”, Math. Mech. Solids, 17:1 (2012), 59–66 | DOI | MR | Zbl
[17] Belubekyan V. M., Belubekyan M. V., “Three-dimensional Problem of Reyleight Wave Propagation.”, Dokl. NAN Armenii, 105:4 (2005), 362–368 (In Russian)
[18] Kaplunov J. D., Prikazchikov D. A., Rogerson G. A., “On three-dimensional edge waves in semi-infinite isotropic plates subject to mixed face boundary conditions”, J. Acoust. Soc. Am., 118:5 (2005), 2975–2983 | DOI | MR
[19] Zernov V., Kaplunov J., “Three-dimensional edge waves in plates”, Proc. R. Soc. Lond. A, 464 (2008), 301–318 | DOI | MR | Zbl
[20] Wilde M. V., Kaplunov Yu. D., Kossovich L. Yu., Kraevye i interfeisnye rezonansnye iavleniia v uprugikh telakh [Edge and interfacial resonance phenomena in elastic bodies], Fizmatlit, Moscow, 2010, 280 pp.
[21] Golovchan V. T., Kubenko V. D., Shul'ga N. A., Guz' A. N., Grinchenko V. T., “Three-dimensional problems of the theory of elasticity and plasticity”, Dinamika uprugikh tel [Dynamics of elastic bodies], v. 5, Nauk. dumka, Kiev, 1986, 288 pp. | MR