Solution of the contact problem on indentation of rectangular punch in an elastic roughnesses half-space in the presence of coulomb friction
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 42-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical solution of the static three-dimensional contact problem of the indentation of a rectangular stamp with a flat base in an elastic rough half-space in the presence of Coulomb friction and previously unknown adhesion and slip zones is obtained. Accounting for surface roughness in this problem is carried out based on the spherical model of microroughnesses by introducing the nonlinear terms describing surface microroughnesses crushing and shearing to the expression of relative displacement of the interacting bodies. The influence of the values of the friction coefficient and the parameters of the microscopic irregularities on the size and shape of the zone of adhesion and the distribution of the tangential contact stresses are analyzed. It is shown that the inclusion of surface microroughness shear forming roughness can lead to a substantial increase in the size of the zone of adhesion.
Keywords: elastic body, rough surface, contact problem, numerical solution, iterative process.
Mots-clés : Coulomb friction
@article{VSGTU_2014_4_a4,
     author = {A. I. Alexandrov and E. V. Grabko},
     title = {Solution of the contact problem on indentation of rectangular punch in an elastic roughnesses half-space in the presence of coulomb friction},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {42--52},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a4/}
}
TY  - JOUR
AU  - A. I. Alexandrov
AU  - E. V. Grabko
TI  - Solution of the contact problem on indentation of rectangular punch in an elastic roughnesses half-space in the presence of coulomb friction
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 42
EP  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a4/
LA  - ru
ID  - VSGTU_2014_4_a4
ER  - 
%0 Journal Article
%A A. I. Alexandrov
%A E. V. Grabko
%T Solution of the contact problem on indentation of rectangular punch in an elastic roughnesses half-space in the presence of coulomb friction
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 42-52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a4/
%G ru
%F VSGTU_2014_4_a4
A. I. Alexandrov; E. V. Grabko. Solution of the contact problem on indentation of rectangular punch in an elastic roughnesses half-space in the presence of coulomb friction. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 42-52. http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a4/

[1] Aleksandrov V. M., “Contact Problems in Tribology”, Mekhanika i nauchno-tekhnicheskii progress [Mechanics and Scientific-Technical Progress], v. 3, Mekhanika deformiruemogo tverdogo tela [Mechanics of deformable solids], Nauka, Moscow, 1988, 170–180 (In Russian)

[2] Vovkushevskiy A. V., “Variational Statement and Methods for Solving the Contact Problem with Friction and Surface Roughness Taken into Account”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1991, no. 3, 56–62 (In Russian)

[3] Goryacheva I. G., Mekhanika friktsionnogo vzaimodeistviia [Mechanic of friction interaction], Nauka, M., 2001, 478 pp. (In Russian)

[4] Aleksandrov V. M., Pozharskii D. A., “Three-dimensional contact problems taking friction and non-linear roughness into account”, J. Appl. Math. Mech., 68:3 (2004), 463–472 | DOI | MR | Zbl

[5] Pauk V., Zastrau B. W., “Plane contact problems with partial slip for rough half-space”, J. Theor. Appl. Mech., 42:1 (2004), 107–124 http://www.ptmts.org/2004-1-pauk-z.pdf

[6] Pauk V., “Plane elastic contact involving friction and boundary roughness”, EJPAU, 9:1 (2006), #31 http://www.ejpau.media.pl/articles/volume9/issue1/art-31.pdf

[7] Dyachenko N. N., Shashkova E. V., “Contact of the paraboloidal punch with elastic rough half-space in conditions partial slippage”, Visnik Zaporiz'kogo natsional'nogo universitetu. Fiz.-mat. nauki, 2010, no. 2, 29–37 (In Russian)

[8] Dyachenko N. N., Man'ko N. I.-V., Shashkova E. V., “Contact promlem of a punch, square in the plan, with rough half-space in partial slippage conditions”, Metodi rozv'iazavnnia prikladnikh zadach mekhaniki deformivnogo tverdogo tila [Methods of Solving Applied Problems in Solid Mechanics], Dnipropetrovsk, 2012, 159–168 (In Russian)

[9] Grabko E. V., “Numerical solution of the static contact problem of elastic rough bodies with Coulomb friction”, Problemi obchisliuval'no\"i mekhaniki i mitsnosti konstruktsii [Problems of Computational Mechanics and Strength of Structures], Issue 18, Lira, Dnipropetrovsk, 2012, 39–47 (In Russian)

[10] Galanov B. A., “The method of boundary equations of the Hammerstein-type for contact problems of the theory of elasticity when the regions of contact are not known”, J. Appl. Math. Mech., 49:5 (1985), 634–640 | DOI | MR | Zbl

[11] Aleksandrov A. I., “The method of nonlinear boundary integral equations for solving three-dimensional contact problem of the interaction of elastic bodies in the presence of friction”, Visnik Dnipropetrovs'kogo universitetu. Ser. Mekhanika, 18:14(1) (2010), 26–38 (In Russian)

[12] Kalker J. J., “A survey of the mechanics of contact between solid bodies”, ZAAM, 57:5 (1977), T3–T17 | DOI | Zbl

[13] Aleksandrov A. I., Grabko E. V., “The existence theorems for the probler of contact interaction between elastic bodies with the rough surfaces”, Visnik Zaporiz'kogo natsional'nogo universitetu. Fiz.-mat. nauki, 2010, no. 2, 5–11 (In Russian)

[14] Love A. E. H., A treatise on the mathematical theory of elasticity, Dover Publ., New York, 1944, xviii+643 pp. | MR | Zbl

[15] Kravchuk A. S., “By the formulation of boundary value problems of the theory of elasticity with boundary friction”, Mekhanika deformiruemogo tverdogo tela [Mechanics of deformable solids], Kuibysh. Univ., Kuibyshev, 1976, 102–105 (In Russian)

[16] Demkin N. B., Kontaktirovanie sherokhovatykh tel [Contacting of Rough Surfaces], Nauka, Moscow, 1970, 227 pp. (In Russian)

[17] Pisarenko G. S., Yakovlev A. P., Matveev V. V., Spravochnik po soprotivleniiu materialov [Reference book on strength of materials], Naukova dumka, Kiev, 1988, 736 pp. (In Russian)

[18] Johnson K. L., Contact mechanics, Cambridge University Press, Cambridge, xi+452 pp. | DOI | Zbl

[19] Aleksandrov A. I., Grabko E. V., “Solution of the problems on contact between elastic rough bodies with the use of nonlinear integral equations”, Metodi rozv'iazavnnia prikladnikh zadach mekhaniki deformivnogo tverdogo tila [Methods of Solving Applied Problems in Solid Mechanics], Issue 13, Dnipropetrovsk, 2012, 14–21 (In Russian)

[20] Galin L. A., Contact problems, Solid Mechanics and Its Applications, 155, ed. G. M. L. Gladwell, Springer, Dordrecht, 2008, xiii+315 pp. | DOI | MR | MR | Zbl