On authentication codes based on orthogonal tables
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 178-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authentication codes resistant to messages imitation and substitution are investigated. The case when the probabilities of imitation and substitution reach the lower limits has been highlighted. Such authentication codes are called optimal. We study constructions of optimal authentication codes based on orthogonal tables. The case of optimal authentication codes with optional uniform distribution on the set of keys is studied.
Keywords: authentication code, hash function.
Mots-clés : message imitation
@article{VSGTU_2014_4_a15,
     author = {S. M. Ratseev and O. I. Cherevatenko},
     title = {On authentication codes based on orthogonal tables},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {178--186},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a15/}
}
TY  - JOUR
AU  - S. M. Ratseev
AU  - O. I. Cherevatenko
TI  - On authentication codes based on orthogonal tables
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 178
EP  - 186
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a15/
LA  - ru
ID  - VSGTU_2014_4_a15
ER  - 
%0 Journal Article
%A S. M. Ratseev
%A O. I. Cherevatenko
%T On authentication codes based on orthogonal tables
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 178-186
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a15/
%G ru
%F VSGTU_2014_4_a15
S. M. Ratseev; O. I. Cherevatenko. On authentication codes based on orthogonal tables. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 178-186. http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a15/

[1] Cheremushkin A. V., Kriptograficheskie protokoly. Osnovnye svoistva i uiazvimosti [Cryptographic Protocols: Basic Properties and Vulnerability], Akademiia, Moscow, 2009, 272 pp. (In Russian)

[2] Holl M., Combinatorial Theory, John Wiley Sons, Inc., New York, 1988, xvii+440 pp. | DOI | MR | MR

[3] Bose R. S., “On the applications of the properties of Galois fields to the problems of construction of Hyper–Graeco–Latin square”, Indian J. Stat, 4:3 (1938), 323–338

[4] Ratseev S. M., “On optimal authentication code”, Sistemy i Sredstva Inform., 23:1 (2013), 53–57 (In Russian)

[5] Zubov A. Iy., Kriptograficheskie metody zashchity informatsii. Sovershennye shifry [Cryptographic Metho ds of Information Security. Perfect Ciphers], Gelios ARV, Moscow, 2005, 192 pp. (In Russian)

[6] Ratseev S. M., “About perfect imitation resistant ciphers”, Prikl. Diskr. Mat., 2012, no. 3, 41–46 (In Russian)

[7] Ratseev S. M., “On perfect imitation resistant ciphers of substitution with unbounded key”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2013, no. 9/1(110), 42–48 (In Russian) | Zbl