Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_4_a14, author = {N. V. Meleshko and A. Yu. Samarin}, title = {Complex time transformation pecularities for wave function collapse description using quntum path integrals}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {170--177}, publisher = {mathdoc}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a14/} }
TY - JOUR AU - N. V. Meleshko AU - A. Yu. Samarin TI - Complex time transformation pecularities for wave function collapse description using quntum path integrals JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 170 EP - 177 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a14/ LA - ru ID - VSGTU_2014_4_a14 ER -
%0 Journal Article %A N. V. Meleshko %A A. Yu. Samarin %T Complex time transformation pecularities for wave function collapse description using quntum path integrals %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 170-177 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a14/ %G ru %F VSGTU_2014_4_a14
N. V. Meleshko; A. Yu. Samarin. Complex time transformation pecularities for wave function collapse description using quntum path integrals. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 170-177. http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a14/
[1] von Neumann J., Mathematical foundations of quantum mechanics, Investigations in Physics, 2, Princeton, Princeton Univ. Press, 1955, xii+445 pp. | MR | Zbl
[2] Bell J., “Against ‘measurement’”, Physics World, 1990, August, 33–40
[3] Everett H., ““Relative State” Formulation of Quantum Mechanics”, Rev. Mod. Phys., 29:3 (1957), 454–462 | DOI | MR
[4] Mensky M. B., “Quantum measurements, the phenomenon of life, and time arrow: three great problems of physics (in Ginzburg's terminology) and their interrelation”, Phys. Usp., 50:4 (2007), 397–407 | DOI | DOI | MR
[5] Samarin A. Yu., “Description of discrete spectrum states transition processes”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 2(19), 226–230 (In Russian) | DOI
[6] Samarin A. Yu., “Natural space of the micro-object”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 3(24), 117–128 (In Russian) | DOI
[7] Feynman R. P., “Space-time approach to non-relativistic quantum mechanics”, Rev. Mod. Phys., 20:2 (1948), 367–387 ; Feynman R. P., “Space-time approach to non-relativistic quantum mechanics”, Feynman's Thesis — A New Approach to Quantum Theory, World Scientific Publ., Singapore, 2005, 71–109 | DOI | MR | Zbl | DOI
[8] Feynman R. P., Hibbs A. R., Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965, 371+xii pp. | MR | Zbl
[9] Samarin A. Yu., “Quantum Particle Motion in Physical Space”, Advanced Studies in Theoretical Physics, 8:1 (2014), 27–34, arXiv: [quant-ph] 1407.3559 | DOI
[10] Samarin A. Yu., “Space localization of the quantum particle”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 1(30), 387–397 (In Russian) | DOI
[11] Vasiliev A. N., Functional Methods in Quantum Field Theory and Statistical Physics, Gordon and Breach Science Publ., Amsterdam, 1998, xiv+312 pp. | MR | Zbl
[12] Popov V. N., Kontinual'nye integraly v kvantovoi teorii polia i statisticheskoi fizike [Path Integrals in Quantum Field Theory and Statistical Physics], Atomizdat, Moscow, 1978, 256 pp. (In Russian) | MR
[13] Faddeev L. D., Slavnov A. A., Gauge fields: introduction to quantum theory, Frontiers in Physics, 50, Benjamin/Cummings, Advanced Book Program, Reading, Mass., 1980, xiii+232 pp. | MR | Zbl
[14] Zinn Justin J., Path Integrals in Quantum Mechanics, Oxford University Press, Oxford, 2004, 320+xiv pp. | DOI | MR
[15] Samarin A. Yu., Macroscopic Body Motion in Terms of Quantum Evolution, 2004, 5 pp., arXiv: [quant-ph] 1408.0340
[16] Kac M., Probability and related topics in physical sciences, Lectures in Applied Mathematics, I, Interscience Publ., London, New York, 1959, xiii+266 pp. | MR