Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_4_a10, author = {A. P. Yankovskii}, title = {The uniqueness of solution in the small sense of tasks of equally-stressed reinforcement of composite}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {121--132}, publisher = {mathdoc}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a10/} }
TY - JOUR AU - A. P. Yankovskii TI - The uniqueness of solution in the small sense of tasks of equally-stressed reinforcement of composite JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 121 EP - 132 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a10/ LA - ru ID - VSGTU_2014_4_a10 ER -
%0 Journal Article %A A. P. Yankovskii %T The uniqueness of solution in the small sense of tasks of equally-stressed reinforcement of composite %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 121-132 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a10/ %G ru %F VSGTU_2014_4_a10
A. P. Yankovskii. The uniqueness of solution in the small sense of tasks of equally-stressed reinforcement of composite. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 121-132. http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a10/
[1] Banichuk N. V., Kobelev V. V., Rikards R. B., Optimizatsiia elementov konstruktsii iz kompozitsionnykh materialov [Optimization of Structural Elements Made of Composite Materials], Mashinostroenie, Moscow, 1988, 224 pp. (In Russian)
[2] Nemirovskii Yu. V., Yankovskii A. P., Ratsional'noe proektirovanie armirovannykh konstruktsii [Rational Design of Reinforced Structures], Nauka, Novosibirsk, 2002, 488 pp. (In Russian)
[3] Khazhinskii G. M., Modeli deformirovaniia i razrusheniia metallov [The Models of Metal Deformation and Destruction], Nauchnyi mir, Moscow, 2011, 231 pp. (In Russian)
[4] Nemirovskii Yu. V., Yankovskii A. P., “Equal-stressed reinforcement of metal-composite plates with fibers of constant cross section in steady-state creep”, Mechanics of Composite Materials, 44:1 (2008), 9–24 | DOI
[5] Yankovskii A. P., “On some properties of equal-stress problem solution reinforcement bending the metal-composite plates working in steady creep conditions”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 2(23), 62–73 (In Russian) | DOI
[6] Yankovskii A. P., “Application of methods of the theory of perturbations in flat problem of equally-stressed reinforcing of metal-composite plates at steady creep”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 2(19), 53–71 (In Russian) | DOI
[7] Yankovskii A. P., “Equal-Stress Reinforcement the Ring Bending Metal-Composites Plates Working in Conditions of Steady Creep”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 5(21), 42–54 (In Russian) | DOI
[8] Yankovskii A. P., “Application of methods of the perturbation theory to problem of equally-stressed reinfocing of bending metal-composite plates in conditions of steady-state creep”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 2(31), 17–35 (In Russian) | DOI
[9] Yankovskii A. P., “Numerical-analytical method of solving the plane problem of equal-stressed reinforcement of metal-composite plates under steady creep conditions”, Computational Continuum Mechanics, 2:2 (2009), 108–120 (In Russian) | DOI
[10] Novatskii V., Teoriia uprugosti [Elasticity Theory], Mir, Moscow, 1975, 872 pp. (In Russian)
[11] Gorin V. V., “Existence and uniqueness of solutions of the nonlocal equation for the ionization source in a glow discharge and a hollow cathode”, Trudy MFTI, 2:3 (2010), 71–80 (In Russian)
[12] Golichev I. I., “On uniqueness and iteration method of solving a non-linear non-stationary problem with non-local boundary conditions of “radiation heat transfer” type”, Ufimsk. Mat. Zh., 2:4 (2010), 27–38 (In Russian) | Zbl
[13] Volynskaya M. G., “Uniqueness of the solution of a nonlocal problem for a degenerate hyperbolic equation”, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 2008, no. 2(61), 43–51 (In Russian) | Zbl
[14] Zhernovyi Yu. V., “Uniqueness of the solution of some boundary value problems for ordinary differential equations with a nonlinear occurrence of the higher derivative”, Differ. Equ., 36:4 (2000), 497–503 | DOI
[15] Dzhuraev T. D., Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov [Boundary value problems for equations of mixed and mixed-composite types], Fan, Tashkent, 1979, 238 pp. (In Russian) | Zbl
[16] Nayfeh A. H., Introduction to perturbation techniques, John Wiley Sons, New York, 1981, xiv+519 pp. | Zbl
[17] Andrianov I., Awrejcewicz J., Metody asimptoticheskogo analiza i sinteza v nelineinoi dinamike i mekhanike deformiruemogo tverdogo tela [Asymptotic Analysis and Synthesis in Nonlinear Dynamics and Mechanics of Deformable Bodies], Institut komp'iuternykh issledovanii, Moscow, Izhevsk, 2013, 276 pp. (In Russian)
[18] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii [Systems of quasi-linear equations], Nauka, Moscow, 1969, 592 pp. (In Russian)
[19] Bitsadze A. V., Boundary value problems for second order elliptic equations, North-Holland Series in Applied Mathematics and Mechanics, 5, North-Holland Publishing Company, Amsterdam, 1968, 211 pp. | Zbl | Zbl
[20] Kachanov L. M., Teoriia polzuchesti [Creep Theory], Fizmatgiz, Moscow, 1960, 456 pp. (In Russian)