On one generalization of Bessel function
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 16-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the generalized Bessel function $J_{\mu ,\omega } ( x )$ is introduced. The function $J_{\mu ,\omega } ( x )$ is given as one solution of the following differential equation: $$ x^2{y}''+x{y}'+\left( {x-\mu ^2} \right)\left( {x+\omega ^2} \right)y=0, \quad \mu , \omega \notin \mathbb Z. $$ The representation of the $J_{\mu ,\omega } ( x )$ by the power series is given. The theorem on integral representations of the function $J_{\mu ,\omega } ( x )$ is established. The main properties of the function $J_{\mu ,\omega } ( x )$ are studied. The integral transforms of Bessel type with the function $J_{\mu ,\omega } ( x )$ is constructed. Formula of inversion of this transform is received.
Keywords: Bessel function, hypergeometric function, integral transform.
@article{VSGTU_2014_4_a1,
     author = {N. A. Virchenko and M. A. Chetvertak},
     title = {On one generalization of {Bessel} function},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {16--21},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a1/}
}
TY  - JOUR
AU  - N. A. Virchenko
AU  - M. A. Chetvertak
TI  - On one generalization of Bessel function
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 16
EP  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a1/
LA  - ru
ID  - VSGTU_2014_4_a1
ER  - 
%0 Journal Article
%A N. A. Virchenko
%A M. A. Chetvertak
%T On one generalization of Bessel function
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 16-21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a1/
%G ru
%F VSGTU_2014_4_a1
N. A. Virchenko; M. A. Chetvertak. On one generalization of Bessel function. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 16-21. http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a1/

[1] Watson G. N., A Treatise on the Theory of Bessel Functions, University Press, Cambridge, 1922, vi+804 pp. | MR | Zbl

[2] Virchenko N. A., Tsarenko V. N., Drobnye integral'nye preobrazovaniia gipergeometricheskogo tipa [Fractional integral transformations of hypergeometric type], In-t matem. NAN Ukrainy, Kiev, 1995, 216 pp. (In Russian)

[3] Volkodavov V. F., Kanatnikov A. N., Integral'nye preobrazovaniia i operatsionnoe ischislenie [Integral Transforms and Operational Calculus], Bauman MSTU, Moscow, 1968, 228 pp. (In Russian)

[4] Galitsyn A. S., Zhukovskii A. N., Integral'nye preobrazovaniia i spetsial'nye funktsii v zadachakh teploprovodnosti [Integral transforms and special functions in heat conduction problems], Naukova Dumka, Kiev, 1986, 284 pp. (In Russian)

[5] Ditkin V.A., Prudnikov A. P., “On the theory of the operational calculus for the Bessel equation”, U.S.S.R. Comput. Math. Math. Phys., 3:2 (1963), 296–315 | DOI | MR | Zbl

[6] Korenev B. G., Vvedenie v teoriiu besselevykh funktsii [Introduction to the theory of Bessel functions], Nauka, Moscow, 1971, 287 pp. (In Russian) | MR

[7] Lebedev N. N., Spetsial'nye funktsii i ikh prilozheniia [Special functions and their applications], Fizmatgiz, Moscow, 1963, 358 pp. (In Russian) | MR

[8] Nikiforov A. F., Uvarov V. B., Spetsial'nye funktsii matematicheskoi fiziki [Special functions of mathematical physics], Nauka, Moscow, 1978, 320 pp. (In Russian) | MR

[9] Samko St. G., Kilbas A. A., Marichev O. I., Fractional integrals and derivatives: theory and applications, Gordon and Breach, New York, NY, 1993, xxxvi+976 pp. | MR | Zbl

[10] Bonilla B., Kilbas A. A., Rivero M., Rodriguez L., Trujillo J. J., “Modified Bessel-type function and solution of differential and integral equations”, Indian J. Pure and Appl. Math., 31:1 (2000), 93–109 | MR | Zbl

[11] Kalla S. L., Virchenko N., Tsarenko V., “On some fractional order integral transforms generated by orthogonal polynomials”, Applied Mathematics and Computation, 91:2–3 (1998), 209–219 | DOI | MR | Zbl

[12] Khajan N. G., “A modified finite Hankel transforms”, Integral Transforms and Special Functions, 14:5 (2003), 403–412 | DOI | MR

[13] Virchenko N., Kalla S. L., Zaikina S., “On some generalized integral transforms”, Hadronic J., 32:5 (2009), 539–548 | MR | Zbl

[14] Virchenko N., “On one effective method of solving of mixed boundary value problems”, Abstracts of International Congress of Mathematicians, Zurich, 1994, 224

[15] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. 1, Bateman Manuscript Project, McGraw-Hill Book Co., New York, 1953, xxvi+302 pp. | Zbl

[16] Kilbas A. A., Saigo M., H-Transforms. Theory and Applications, Analytical Methods and Special Functions, CRC Press, Boca, Raton, etc., 2004 | DOI | MR | Zbl

[17] Virchenko N. A., “On an integral transform with generalized hypergeometric function”, Proceedings of the Twelfth Inter-University Conference. Part 3, Matem. modelirovanie i kraev. zadachi, Samara State Technical Univ., Samara, 2002, 125 (In Russian)