On one generalization of Bessel function
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 16-21

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the generalized Bessel function $J_{\mu ,\omega } ( x )$ is introduced. The function $J_{\mu ,\omega } ( x )$ is given as one solution of the following differential equation: $$ x^2{y}''+x{y}'+\left( {x-\mu ^2} \right)\left( {x+\omega ^2} \right)y=0, \quad \mu , \omega \notin \mathbb Z. $$ The representation of the $J_{\mu ,\omega } ( x )$ by the power series is given. The theorem on integral representations of the function $J_{\mu ,\omega } ( x )$ is established. The main properties of the function $J_{\mu ,\omega } ( x )$ are studied. The integral transforms of Bessel type with the function $J_{\mu ,\omega } ( x )$ is constructed. Formula of inversion of this transform is received.
Keywords: Bessel function, hypergeometric function, integral transform.
@article{VSGTU_2014_4_a1,
     author = {N. A. Virchenko and M. A. Chetvertak},
     title = {On one generalization of {Bessel} function},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {16--21},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a1/}
}
TY  - JOUR
AU  - N. A. Virchenko
AU  - M. A. Chetvertak
TI  - On one generalization of Bessel function
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 16
EP  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a1/
LA  - ru
ID  - VSGTU_2014_4_a1
ER  - 
%0 Journal Article
%A N. A. Virchenko
%A M. A. Chetvertak
%T On one generalization of Bessel function
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 16-21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a1/
%G ru
%F VSGTU_2014_4_a1
N. A. Virchenko; M. A. Chetvertak. On one generalization of Bessel function. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2014), pp. 16-21. http://geodesic.mathdoc.fr/item/VSGTU_2014_4_a1/