The Optimal Location of the Polygonal Internal Supports to the Circular Rigid-Plastic Plates
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 94-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The general solution of a problem of the limit behavior and dynamic bend is obtained for the perfect rigid-plastic circular plates, hinge supported on immobile polygonal contour, located inside the plate. The plate is subjected to short-term dynamic load of explosive type with high intensity, uniformly distributed over the surface. It is shown that there are several mechanisms of limit and dynamic deformation of plates depending on the location of the support contour. The simple analytic expressions are obtained for the limit load and maximum final deflection of plates. The optimal location of support and the number of sides of the polygonal contour are determined, at which the plate has maximum limit load. Numerical examples are given.
Keywords: rigid-plastic plate, circular plate, internal polygonal support, explosive load, limit load, final deflection, optimal location of support.
@article{VSGTU_2014_3_a7,
     author = {T. P. Romanova},
     title = {The {Optimal} {Location} of the {Polygonal} {Internal} {Supports} to the {Circular} {Rigid-Plastic} {Plates}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {94--105},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a7/}
}
TY  - JOUR
AU  - T. P. Romanova
TI  - The Optimal Location of the Polygonal Internal Supports to the Circular Rigid-Plastic Plates
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 94
EP  - 105
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a7/
LA  - ru
ID  - VSGTU_2014_3_a7
ER  - 
%0 Journal Article
%A T. P. Romanova
%T The Optimal Location of the Polygonal Internal Supports to the Circular Rigid-Plastic Plates
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 94-105
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a7/
%G ru
%F VSGTU_2014_3_a7
T. P. Romanova. The Optimal Location of the Polygonal Internal Supports to the Circular Rigid-Plastic Plates. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 94-105. http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a7/

[1] Hopkins H. G., Prager W., “On the dynamics of plastic circular plates”, Z. Angew. Math. Phys., 5:4 (1954), 317–330 | DOI | MR | Zbl

[2] Jones N., “A literature review of the dynamic plastic response of structures”, The Shock and Vibration Digest, 7:8 (1975), 89–105 | DOI

[3] Olenev G. M., “Optimal location of additional supports to rigid-plastic circular plates in case of impulse loading”, Uch. Zap. Tartu. Gos. Univ., 659 (1983), 30–41 (In Russian) | Zbl

[4] Komarov K. L., Nemirovskii Yu. V., Dinamika zhestkoplasticheskikh elementov konstruktsii [Dynamics of rigidly plastic elements of structures], Nauka, Novosibirsk, 1984, 234 pp. | Zbl

[5] Nemirovskii Yu. V., Romanova T. P., “Dynamic bending of polygonal plastic slabs”, J. Appl. Mech. Tech. Phys., 29:4 (1988), 591–597 | DOI

[6] Reid S. R., Harrigan J. J., “Transient effects in the quasi-static and dynamic internal inversion and nosing of metal tubes”, International Journal of Mechanical Sciences, 40:2–3 (1998), 263–280 | DOI

[7] Velasco J. I., Martínez A. B., Arencón D., Rodríguez-Pérez M. A., De Saja J. A., “Application of instrumented falling dart impact to the mechanical characterization of thermoplastic foams”, Journal of Materials Science, 34:3 (1999), 431–438 | DOI

[8] Jones N., Jones C., “Inelastic failure of fully clamped beams and circular plates under impact loading”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 216 (2002), 133–150 | DOI

[9] Casapulla C., Maione A., “Structural response to transverse impact loading. Some orders of magnitude”, Advances in Earthquake Engineering, 13 (2003), 131–140

[10] Nemirovskii Yu. V., Romanova T. P., “Modeling of dynamic behaviour of doubly connected rigid-plastic curved plates supported on the internal contour”, Proceedings of the Fifth All-Russian Scientific Conference with international participation (29–31 May 2008). Part 1, Matem. Mod. Kraev. Zadachi, Samara State Technical Univ., Samara, 2008, 197–207 (In Russian)

[11] Romanova T., Nemirovsky Yu., “Dynamic rigid-plastic deformation of arbitrarily shaped plates”, Journal of Mechanics of Materials and Structures, 3:2 (2008), 313–334 | DOI

[12] Jones N., “Impact loading of ductile rectangular plates”, Thin-Walled Structures, 50:1 (2012), 68–75 | DOI

[13] Nemirovskii Yu. V., Romanova T. P., “Modelling of limit and dynamic behaviour of the rigid-plastic plate of any form with the internal curvilinear support”, Vestn. Chuvashskogo gos. pedagog. un-ta. Ser. Mekhanika predel'nogo sostoianiia, 2013, no. 3(17), 89–96 (In Russian)

[14] Chen F. L., Yu T. X., “Membrane factor method for large deflection response of beams and plates to intense dynamic loading”, WIT Transactions on the Built Environment, 141 (2014), 59–71 | DOI

[15] Erkhov M. I., Teoriia ideal'no plasticheskikh tel i konstruktsii [Theory of ideal plastic solids and structures], Nauka, Moscow, 1978, 352 pp.