Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_3_a6, author = {V. P. Radchenko and A. D. Moskalik and I. E. Adeyanov}, title = {Comparative {Analysis} of the {Approximate} {Analytical} and {Finite} {Element} {Solutions} for {Misaligned} {Tube}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {79--93}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a6/} }
TY - JOUR AU - V. P. Radchenko AU - A. D. Moskalik AU - I. E. Adeyanov TI - Comparative Analysis of the Approximate Analytical and Finite Element Solutions for Misaligned Tube JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 79 EP - 93 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a6/ LA - ru ID - VSGTU_2014_3_a6 ER -
%0 Journal Article %A V. P. Radchenko %A A. D. Moskalik %A I. E. Adeyanov %T Comparative Analysis of the Approximate Analytical and Finite Element Solutions for Misaligned Tube %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 79-93 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a6/ %G ru %F VSGTU_2014_3_a6
V. P. Radchenko; A. D. Moskalik; I. E. Adeyanov. Comparative Analysis of the Approximate Analytical and Finite Element Solutions for Misaligned Tube. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 79-93. http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a6/
[1] Hill R., Hutchinson J. W., “Bifurcation phenomena in the plane tension test”, J. Mech. Phys. solids, 23 (1975), 239–264 | DOI | MR | Zbl
[2] Stören S., Rice J. R., “Localized necking in thin sheets”, J. Mech. Phys. solids, 23:6 (1975), 421–441 | DOI | Zbl
[3] Hutchinson J. W., Neale K. W., “Influence of strain-rate sensitivity on necking under uniaxial tension”, Acta Metallurgica, 25:8 (1977), 839–846 | DOI
[4] Keller I. É., “Self-similar shapes of the free boundary of a nonlinear-viscous band under uniaxial tension”, J. Appl. Mech. Tech. Phys., 51:1 (2010), 99–105 | DOI | MR | Zbl
[5] Popov N. N., Radchenko V. P., “Analytical solution of the stochastic steady-state creep boundary value problem for a thick-walled tube”, J. Appl. Math. Mech., 76:6 (2012), 738–744 | DOI | MR | Zbl
[6] Dolzhkovoi A. A., Popov N. N., “Solution of the nonlinear stochastic creep problem for a thick-walled tube by method of small parameter”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2002, no. 16, 84–89 (In Russian) | DOI
[7] Popov N. N., Isutkina V. N., “Construction of an Analytical Solution of a Two-Dimensional Stochastic Problem of the Steady Creep for a Thick-Walled Pipe”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2007, no. 2(15), 57–61 (In Russian) | DOI
[8] Dolzhkovoi A. A., Popov N. N., Radchenko V. P., “Solution of the stochastic boundary-value problem of steady-state creep for a thick-walled tube using the small-parameter method”, J. Appl. Mech. Tech. Phys., 47:1 (2006), 134–142 | DOI
[9] Kovalenko L. V., Popov N. N., Radchenko V. P., “Solution of the plane stochastic creep boundary value problem”, J. Appl. Math. Mech., 73:6 (2009), 727–733 | DOI | MR | Zbl
[10] Popov N. N., Samarin Yu. P., “Stress fields close to the boundary of a stochastically inhomogeneous half-plane during creep”, J. Appl. Mech. Tech. Phys., 29:1 (1988), 149–154 | DOI | MR
[11] Kachanov L. M., Teoriia polzuchesti [Creep theory], Fizmatgiz, Moscow, 1960, 455 pp. (In Russian)
[12] Radchenko V. P., Bashkinova E. V., “Solution of the boundary value problems for steady creep in polar coordinates by the perturbation method”, Vestn. Sam. gos. tekhn. un-ta. Ser. Tekhn. nauki, 1998, no. 5, 86–91 (In Russian)
[13] Bashkinova E. V., “Solution of the value boundary problem of steady creep for non-axisymmetric thick-walled tube”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 16, 2002, 105–110 (In Russian) | DOI
[14] Ivlev D. D., Ershov L. V., Metod vozmushchenii v teorii uprugoplasticheskogo tela [Perturbation Method in the Theory of an Elastic-Plastic Body], Nauka, M., 1978, 208 pp. (In Russian)
[15] Kerzhaev A. P., “Elastoplastic state of the thin annular plate in the presence of translational anisotropy under uniform tension”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2012, no. 2(12), 174–179 (In Russian)
[16] Fominykh S. O., “Elastoplastic state of the thick-walled pipe by reacting the different types of plastic anisotropy”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2011, no. 1(9), 201–2016 (In Russian)
[17] Petrov N. I., “On the deformation of stretched strip weakened sloping bores”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2014, no. 2(20), 36–45 (In Russian)
[18] Nikitin A. V., Tikhonov S. V., “Limit condition anisotropic multilayer translationnally thick-walled pipes under internal pressure”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2014, no. 1(19), 88–94 (In Russian)
[19] Kuntashev P. A., Nemirovskii Yu. V., “Convergence of the perturbation method in elastic problems”, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 1985, no. 3, 75–78 (In Russian)
[20] Nikitenko A. F., Polzuchest' i dlitel'naia prochnost' metallicheskikh materialov [Creep and Long-Term Strength of Metal Materials], Novosibirsk State University of Architecture and Civil Engineering, Novosibirsk, 1997, 278 pp. (In Russian)
[21] Rabotnov Iu. N., Mekhanika deformiruemogo tverdogo tela [Mechanics of deformable solids], Nauka, Moscow, 1979, 744 pp. (In Russian)
[22] Moskalik A. D., “Analysis of the stress-strain state of a thick-walled misalignment cylinder under internal pressure in steady-state creep by small parameter method”, Proceedings of the Ninth All-Russian Scientific Conference with international participation. Part 1, Matem. Mod. Kraev. Zadachi, Samara State Technical Univ., Samara, 2013, 140–144 (In Russian)
[23] Moskalik A. D., “The application of perturbation method to problem of misaligned tube in conditions of steady-state creep”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 4(33), 76–85 (In Russian) | DOI | Zbl
[24] Malinin N. N., Prikladnaia teoriia plastichnosti i polzuchesti [Applied Theory of Plasticity and Creep], Mashinostroenie, Moscow, 1975, 400 pp. (In Russian)
[25] Radchenko V. P., Saushkin M. N., Polzuchest' i relaksatsiia ostatochnykh napriazhenii v uprochnennykh konstruktsiiakh [Creep and Relaxation of Residual Stresses in Hardened Structures], Mashinostroenie-1, Moscow, 2005, 226 pp. (In Russian)