Comparative Analysis of the Approximate Analytical and Finite Element Solutions for Misaligned Tube
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 79-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary value problem of steady-state creep for thick-walled misaligned tube under internal pressure was considered. The approximate analytical solution of this problem by method of small parameter including the second approach is under construction. The solution for the state of plane deformation is constructed. The hypothesis of incompressibility of material for creep strain is used. As a small parameter the misalignment of the centers of the inner and outer radii of the tube is used. The main attention to the convergence of the resulting analytical solution considering the second approximation and assessment of its error is paid. It is noted that the convergence problem is solved only for boundary value problems in the theory of elasticity. Therefore the error assessment in the problem is solved on the basis of a comparison of the approximate analytical solution with the numerical solution constructed on the finite element method, for some special cases. Considering the symmetry of the problem, the finite element model was built for the half tube. The number of finite elements is about 18,000. Considering the symmetry of the problem the second half of the tube is replaced by boundary conditions. Analysis of analytical and numerical solutions is executed depending on the steady-state creep nonlinearity parameter and misaligned parameter that is ratio of the misalignment of the centers of the outer and inner diameter to the outer radius. It is shown that the error of deviation of the approximate analytical solution in the second approximation from numerical solution until the misalignment value of the centers of the inner and outer diameters of 0.1 for the tubes with small exponent of the steady-state creep (3 to 8) is not more than {9 %}, and error to 8{ %} for the tubes with a large exponent of the steady-state creep nonlinearity is observed in the misaligned parameter to 0.06. Results of computations are presented in tabular form and in the form of graphs. Recommendations for the use of the constructed approximate analytical solution in applied problems are given.
Keywords: thick-walled misaligned tube, steady-state creep, approximate analytical solution, small parameter method, second approximation, finite element method, numerical solution
Mots-clés : solution error.
@article{VSGTU_2014_3_a6,
     author = {V. P. Radchenko and A. D. Moskalik and I. E. Adeyanov},
     title = {Comparative {Analysis} of the {Approximate} {Analytical} and {Finite} {Element} {Solutions} for  {Misaligned} {Tube}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {79--93},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a6/}
}
TY  - JOUR
AU  - V. P. Radchenko
AU  - A. D. Moskalik
AU  - I. E. Adeyanov
TI  - Comparative Analysis of the Approximate Analytical and Finite Element Solutions for  Misaligned Tube
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 79
EP  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a6/
LA  - ru
ID  - VSGTU_2014_3_a6
ER  - 
%0 Journal Article
%A V. P. Radchenko
%A A. D. Moskalik
%A I. E. Adeyanov
%T Comparative Analysis of the Approximate Analytical and Finite Element Solutions for  Misaligned Tube
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 79-93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a6/
%G ru
%F VSGTU_2014_3_a6
V. P. Radchenko; A. D. Moskalik; I. E. Adeyanov. Comparative Analysis of the Approximate Analytical and Finite Element Solutions for  Misaligned Tube. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 79-93. http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a6/

[1] Hill R., Hutchinson J. W., “Bifurcation phenomena in the plane tension test”, J. Mech. Phys. solids, 23 (1975), 239–264 | DOI | MR | Zbl

[2] Stören S., Rice J. R., “Localized necking in thin sheets”, J. Mech. Phys. solids, 23:6 (1975), 421–441 | DOI | Zbl

[3] Hutchinson J. W., Neale K. W., “Influence of strain-rate sensitivity on necking under uniaxial tension”, Acta Metallurgica, 25:8 (1977), 839–846 | DOI

[4] Keller I. É., “Self-similar shapes of the free boundary of a nonlinear-viscous band under uniaxial tension”, J. Appl. Mech. Tech. Phys., 51:1 (2010), 99–105 | DOI | MR | Zbl

[5] Popov N. N., Radchenko V. P., “Analytical solution of the stochastic steady-state creep boundary value problem for a thick-walled tube”, J. Appl. Math. Mech., 76:6 (2012), 738–744 | DOI | MR | Zbl

[6] Dolzhkovoi A. A., Popov N. N., “Solution of the nonlinear stochastic creep problem for a thick-walled tube by method of small parameter”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2002, no. 16, 84–89 (In Russian) | DOI

[7] Popov N. N., Isutkina V. N., “Construction of an Analytical Solution of a Two-Dimensional Stochastic Problem of the Steady Creep for a Thick-Walled Pipe”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2007, no. 2(15), 57–61 (In Russian) | DOI

[8] Dolzhkovoi A. A., Popov N. N., Radchenko V. P., “Solution of the stochastic boundary-value problem of steady-state creep for a thick-walled tube using the small-parameter method”, J. Appl. Mech. Tech. Phys., 47:1 (2006), 134–142 | DOI

[9] Kovalenko L. V., Popov N. N., Radchenko V. P., “Solution of the plane stochastic creep boundary value problem”, J. Appl. Math. Mech., 73:6 (2009), 727–733 | DOI | MR | Zbl

[10] Popov N. N., Samarin Yu. P., “Stress fields close to the boundary of a stochastically inhomogeneous half-plane during creep”, J. Appl. Mech. Tech. Phys., 29:1 (1988), 149–154 | DOI | MR

[11] Kachanov L. M., Teoriia polzuchesti [Creep theory], Fizmatgiz, Moscow, 1960, 455 pp. (In Russian)

[12] Radchenko V. P., Bashkinova E. V., “Solution of the boundary value problems for steady creep in polar coordinates by the perturbation method”, Vestn. Sam. gos. tekhn. un-ta. Ser. Tekhn. nauki, 1998, no. 5, 86–91 (In Russian)

[13] Bashkinova E. V., “Solution of the value boundary problem of steady creep for non-axisymmetric thick-walled tube”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 16, 2002, 105–110 (In Russian) | DOI

[14] Ivlev D. D., Ershov L. V., Metod vozmushchenii v teorii uprugoplasticheskogo tela [Perturbation Method in the Theory of an Elastic-Plastic Body], Nauka, M., 1978, 208 pp. (In Russian)

[15] Kerzhaev A. P., “Elastoplastic state of the thin annular plate in the presence of translational anisotropy under uniform tension”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2012, no. 2(12), 174–179 (In Russian)

[16] Fominykh S. O., “Elastoplastic state of the thick-walled pipe by reacting the different types of plastic anisotropy”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2011, no. 1(9), 201–2016 (In Russian)

[17] Petrov N. I., “On the deformation of stretched strip weakened sloping bores”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2014, no. 2(20), 36–45 (In Russian)

[18] Nikitin A. V., Tikhonov S. V., “Limit condition anisotropic multilayer translationnally thick-walled pipes under internal pressure”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ia. Iakovleva. Seriia: Mekhanika predel'nogo sostoianiia, 2014, no. 1(19), 88–94 (In Russian)

[19] Kuntashev P. A., Nemirovskii Yu. V., “Convergence of the perturbation method in elastic problems”, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 1985, no. 3, 75–78 (In Russian)

[20] Nikitenko A. F., Polzuchest' i dlitel'naia prochnost' metallicheskikh materialov [Creep and Long-Term Strength of Metal Materials], Novosibirsk State University of Architecture and Civil Engineering, Novosibirsk, 1997, 278 pp. (In Russian)

[21] Rabotnov Iu. N., Mekhanika deformiruemogo tverdogo tela [Mechanics of deformable solids], Nauka, Moscow, 1979, 744 pp. (In Russian)

[22] Moskalik A. D., “Analysis of the stress-strain state of a thick-walled misalignment cylinder under internal pressure in steady-state creep by small parameter method”, Proceedings of the Ninth All-Russian Scientific Conference with international participation. Part 1, Matem. Mod. Kraev. Zadachi, Samara State Technical Univ., Samara, 2013, 140–144 (In Russian)

[23] Moskalik A. D., “The application of perturbation method to problem of misaligned tube in conditions of steady-state creep”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 4(33), 76–85 (In Russian) | DOI | Zbl

[24] Malinin N. N., Prikladnaia teoriia plastichnosti i polzuchesti [Applied Theory of Plasticity and Creep], Mashinostroenie, Moscow, 1975, 400 pp. (In Russian)

[25] Radchenko V. P., Saushkin M. N., Polzuchest' i relaksatsiia ostatochnykh napriazhenii v uprochnennykh konstruktsiiakh [Creep and Relaxation of Residual Stresses in Hardened Structures], Mashinostroenie-1, Moscow, 2005, 226 pp. (In Russian)