Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_3_a5, author = {N. N. Antonenko and I. G. Velichko}, title = {Contact {Problem} of {Torsion} of a {Multilayer} {Base} with {Elastic} {Connections} between {Layers}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {66--78}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a5/} }
TY - JOUR AU - N. N. Antonenko AU - I. G. Velichko TI - Contact Problem of Torsion of a Multilayer Base with Elastic Connections between Layers JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 66 EP - 78 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a5/ LA - ru ID - VSGTU_2014_3_a5 ER -
%0 Journal Article %A N. N. Antonenko %A I. G. Velichko %T Contact Problem of Torsion of a Multilayer Base with Elastic Connections between Layers %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 66-78 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a5/ %G ru %F VSGTU_2014_3_a5
N. N. Antonenko; I. G. Velichko. Contact Problem of Torsion of a Multilayer Base with Elastic Connections between Layers. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 66-78. http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a5/
[1] Jones J. P., Whitter J. S., “Waves at a Flexibly Bonded Interface”, J. Appl. Mech., 4:34 (1967), 905–909 | DOI
[2] Reissner E., Sagoci H. F., “Forced Torsional Oscillations of an Elastic Half-Space. I”, J. Appl. Phys., 15:9 (1944), 652–654 | DOI | MR | Zbl
[3] Borodachev N. M. Boradacheva F. N., “Torsion of an elastic half-space caused by the rotation of a ring-shaped punch”, Inzh. Zhurn. Mekh. Tverd. Tela, 1966, no. 1, 94–99 (In Russian)
[4] Shibuya T., “A Mixed Boundary Value Problem of an Elastic Half-Space under Torsion by a Flat Annular Rigid Stamp”, Bulletin of JSME, 19:129 (1976), 233–238 | DOI
[5] Dhawan G. K., “A mixed boundary value problem of a transversely-isotropic half-space under torsion by a flat annular rigid stamp”, Acta Mechanica, 41:3–4 (1981), 289–297 | DOI | MR | Zbl
[6] Puro A. É., “Solution of the axisymmetric problem of the torsion of an inhomogeneous layer”, Soviet Applied Mechanics, 18:12 (1982), 1071–1075 | DOI
[7] Selvadurai P. S., Singh B. M., Vrbik J., “A Reissner–Sagoci problem for a non-homogeneous elastic solid”, Journal of Elasticity, 16:4 (1986), 383–391 | DOI | Zbl
[8] Tie-Jun L., Yue-Sheng W., “Reissner–Sagoci problem for functionally graded materials with arbitrary spatial variation of material properties”, Mechanics Research Communications, 36:3 (2009), 322–329 | DOI | Zbl
[9] Vasil'ev A. S., Aizikovich S. M., “Mathematical modeling of the problem of torsion of a functionally graded composite material by rigid punch”, Ekologicheskii vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva, 2010, no. 2, 33–41 (In Russian)
[10] Rahman M., “The Reissner–Sagoci problem for a half-space under buried torsional forces”, Int. J. Solids Struct., 37:8 (2000), 1119–1132 | DOI | Zbl
[11] Rahimian M., Ghorbani-Tanha A. K., Eskandari-Ghadi M., “The Reissner–Sagoci problem for a transversely isotropic half-space”, Int. J. Numer. Anal. Meth. Geomech., 30:11 (2006), 1063–1074 ; erratum | DOI | Zbl | DOI
[12] Brzoza A., Pauk V., “Torsion of rough elastic half-space by rigid punch”, Arch. Appl. Mech., 78:7 (2008), 531–542 | DOI | Zbl
[13] Naumov Iu. A., Chistiak V. I., “Torsion of an elastic inhomogeneous layer by a punch”, Ustoichivost' i prochnost' elementov konstruktsii [Stability and strength of structural elements], Dnepropetrovsk State Univ., Dnepropetrovsk, 1973, 12–21 (In Russian)
[14] Dashchenko A. F., Kolybikhin Yu. D., “Torsion of an orthotropic nonhomogeneous layer by two punches”, Soviet Applied Mechanics, 12:3 (1976), 269–274 | DOI
[15] Grilitskii D. V., “Torsion of a two-layer elastic medium”, Prikl. Mekh., 7:1 (1961), 37–42 (In Russian)
[16] Razvitie teorii kontaktnykh zadach v SSSR [Development of the Theory of Contact Problems in the USSR], eds. L. A. Galin, Nauka, Moscow, 1976, 495 pp. (In Russian)
[17] Petrishin V. I., “Torsion of a multilayer base by a ring-shaped punch”, Ustoichivost' i prochnost' elementov konstruktsii [Stability and strength of structural elements], Dnepropetrovsk State Univ., Dnepropetrovsk, 1988, 96–99 (In Russian)
[18] Velichko I. G., Stegantsev E. V., “Contact problem on the torsion of a multilayer base”, Visnik Dnipropetrovs'ko derzhavnogo universitetu, 2004, no. 2, 146–154 (In Russian)
[19] Vasil'ev A. S., Sadyrin E. V., Vasil'eva M. E., “Torsion of an elastic half-space with multilayered coating of periodic structure”, Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta, 13:5–6 (74) (2013), 6–13 (In Russian) | DOI
[20] Vasil'ev A. S., Sadyrin E. V., Fedotov I. A., “Contact problem of the torsion of a transversely isotropic elastic half-space with an inhomogeneous transversely isotropic coating by a ring-shaped punch”, Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta, 2013, no. 1—2 (70—71), 25–34 (In Russian) | Zbl
[21] Aleksandrov V. M., Klindukhov V. V., “Contact problem for a two-layer base with non-ideal mechanical coupling between the layers”, Izv. RAN. MTT, 2000, no. 3, 84–92 (In Russian)
[22] Éishinskii A. M., Kruchenie anizotropnykh i neodnorodnykh tel [Torsion of Anisotropic and Inhomogeneous Bodies], Poligrafist, Dnepropetrovsk, 1999, 389 pp. (In Russian)
[23] Popov G. Ya., Kontaktnye zadachi dlia lineino-deformiruemogo osnovaniia [Contact problems for linearly deformable base], Vyshcha shkola, Kiev, 1962, 168 pp. (In Russian) | MR