On the Solvability of Boundary Value Problem for Mixed-type Equation with a Singular Coefficient
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 44-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study a problem with conditions on the inner characteristic and on some parts of the degeneration line for mixed type equation with singular coefficient in unbounded domain. We prove the uniqueness of solution of the mentioned problem with the help of the extremum principle. The proof of the existence of solution is based on the theory of singular integral equations and Fredholm integral equations.
Keywords: principle of extremum, unique solvability, integral equations, Wiener–Hopf equation, index equation, Fourier integral.
Mots-clés : existence of solution, singular coefficient
@article{VSGTU_2014_3_a3,
     author = {M. Kh. Ruziev},
     title = {On the {Solvability} of {Boundary} {Value} {Problem} for {Mixed-type} {Equation} with a {Singular} {Coefficient}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {44--56},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a3/}
}
TY  - JOUR
AU  - M. Kh. Ruziev
TI  - On the Solvability of Boundary Value Problem for Mixed-type Equation with a Singular Coefficient
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 44
EP  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a3/
LA  - ru
ID  - VSGTU_2014_3_a3
ER  - 
%0 Journal Article
%A M. Kh. Ruziev
%T On the Solvability of Boundary Value Problem for Mixed-type Equation with a Singular Coefficient
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 44-56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a3/
%G ru
%F VSGTU_2014_3_a3
M. Kh. Ruziev. On the Solvability of Boundary Value Problem for Mixed-type Equation with a Singular Coefficient. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 44-56. http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a3/

[1] Repin O. A., Kumykova S. K., “On a boundary value problem with shift for an equation of mixed type in an unbounded domain”, Differ. Equ., 48:8 (2012), 1127–1136 | DOI | MR | Zbl

[2] Abashkin A. A., “On one problem in an infinity half-strip for biaxisimmetric Helmholtz equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 1(26), 39–45 | DOI

[3] Ruziev M. Kh., “Boundary Value Problem For the Equation of Mixed Type with Singular Coefficient in the Domain where the Elliptical Part Is a Half-band”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 1(18), 33–40 | DOI

[4] Gellerstedt S., “Quelques problèmes mixtes pour l'équation ${y^m}{z_{xx}} + {z_{yy}} = 0$”, Ark. Mat. Astron. Fys., 26A:3 (1937), 1–32 | Zbl

[5] Smirnov M. M., Equations of mixed type, Translations of Mathematical Monographs, 51, American Mathematical Society (AMS), Providence, R.I., 1977, iii+232 pp. | MR | MR | Zbl

[6] Lerner M. E., Pul'kin S. P., “On uniqueness of solutions of problems satisfying the Frankl and Tricomi conditions for the general Lavrent'ev–Bitsadze equation”, Differ. Uravn., 11:9 (1966), 1255–1263 | MR | Zbl

[7] Ruziev M. Kh., “A nonlocal problem for a mixed-type equation with a singular coefficient in an unbounded domain”, Russian Math. (Iz. VUZ), 54:11 (2010), 36–43 | DOI | MR | Zbl

[8] Mirsaburov M., Ruziev M. Kh., “A boundary value problem for a class of mixed-type equations in an unbounded domain”, Differ. Equ., 47:1 (2011), 111–118 | DOI | MR | Zbl

[9] Salakhitdinov M. S., Mirsaburov M., Nelokal'nye zadachi dlia uravnenii smeshannogo tipa s singuliarnymi koeffitsientami [Source of the Document Nonlocal Problems for Mixed-Type Equations with Singular Coefficients], Universitet, Tashkent, 2005, 224 pp.

[10] Bitsadze A. V., Some classes of partial differential equations, Advanced Studies in Contemporary Mathematics, 4, Gordon Breach Science Publishers, New York etc., 1988, xi+504 pp. | MR | MR | Zbl | Zbl

[11] Muskhelishvili N. I., Some basic problems of the mathematical theory of elasticity. Fundamental equations, plane theory of elasticity, torsion and bending, Noordhoff International Publishing, Leyden, 1975, xxxi+732 pp. | DOI | MR | MR | Zbl | Zbl

[12] Gakhov F. D., Cherskii Yu. I., Uravneniia tipa svertki [Equations of convolution type], Nauka, Moscow, 1978, 295 pp. | MR | Zbl