Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_3_a3, author = {M. Kh. Ruziev}, title = {On the {Solvability} of {Boundary} {Value} {Problem} for {Mixed-type} {Equation} with a {Singular} {Coefficient}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {44--56}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a3/} }
TY - JOUR AU - M. Kh. Ruziev TI - On the Solvability of Boundary Value Problem for Mixed-type Equation with a Singular Coefficient JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 44 EP - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a3/ LA - ru ID - VSGTU_2014_3_a3 ER -
%0 Journal Article %A M. Kh. Ruziev %T On the Solvability of Boundary Value Problem for Mixed-type Equation with a Singular Coefficient %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 44-56 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a3/ %G ru %F VSGTU_2014_3_a3
M. Kh. Ruziev. On the Solvability of Boundary Value Problem for Mixed-type Equation with a Singular Coefficient. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 44-56. http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a3/
[1] Repin O. A., Kumykova S. K., “On a boundary value problem with shift for an equation of mixed type in an unbounded domain”, Differ. Equ., 48:8 (2012), 1127–1136 | DOI | MR | Zbl
[2] Abashkin A. A., “On one problem in an infinity half-strip for biaxisimmetric Helmholtz equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 1(26), 39–45 | DOI
[3] Ruziev M. Kh., “Boundary Value Problem For the Equation of Mixed Type with Singular Coefficient in the Domain where the Elliptical Part Is a Half-band”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 1(18), 33–40 | DOI
[4] Gellerstedt S., “Quelques problèmes mixtes pour l'équation ${y^m}{z_{xx}} + {z_{yy}} = 0$”, Ark. Mat. Astron. Fys., 26A:3 (1937), 1–32 | Zbl
[5] Smirnov M. M., Equations of mixed type, Translations of Mathematical Monographs, 51, American Mathematical Society (AMS), Providence, R.I., 1977, iii+232 pp. | MR | MR | Zbl
[6] Lerner M. E., Pul'kin S. P., “On uniqueness of solutions of problems satisfying the Frankl and Tricomi conditions for the general Lavrent'ev–Bitsadze equation”, Differ. Uravn., 11:9 (1966), 1255–1263 | MR | Zbl
[7] Ruziev M. Kh., “A nonlocal problem for a mixed-type equation with a singular coefficient in an unbounded domain”, Russian Math. (Iz. VUZ), 54:11 (2010), 36–43 | DOI | MR | Zbl
[8] Mirsaburov M., Ruziev M. Kh., “A boundary value problem for a class of mixed-type equations in an unbounded domain”, Differ. Equ., 47:1 (2011), 111–118 | DOI | MR | Zbl
[9] Salakhitdinov M. S., Mirsaburov M., Nelokal'nye zadachi dlia uravnenii smeshannogo tipa s singuliarnymi koeffitsientami [Source of the Document Nonlocal Problems for Mixed-Type Equations with Singular Coefficients], Universitet, Tashkent, 2005, 224 pp.
[10] Bitsadze A. V., Some classes of partial differential equations, Advanced Studies in Contemporary Mathematics, 4, Gordon Breach Science Publishers, New York etc., 1988, xi+504 pp. | MR | MR | Zbl | Zbl
[11] Muskhelishvili N. I., Some basic problems of the mathematical theory of elasticity. Fundamental equations, plane theory of elasticity, torsion and bending, Noordhoff International Publishing, Leyden, 1975, xxxi+732 pp. | DOI | MR | MR | Zbl | Zbl
[12] Gakhov F. D., Cherskii Yu. I., Uravneniia tipa svertki [Equations of convolution type], Nauka, Moscow, 1978, 295 pp. | MR | Zbl