Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_3_a2, author = {R. A. Aliev}, title = {On the determination of the unknown coefficients of the highest derivatives in a linear elliptic equation}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {31--43}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a2/} }
TY - JOUR AU - R. A. Aliev TI - On the determination of the unknown coefficients of the highest derivatives in a linear elliptic equation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 31 EP - 43 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a2/ LA - ru ID - VSGTU_2014_3_a2 ER -
%0 Journal Article %A R. A. Aliev %T On the determination of the unknown coefficients of the highest derivatives in a linear elliptic equation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 31-43 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a2/ %G ru %F VSGTU_2014_3_a2
R. A. Aliev. On the determination of the unknown coefficients of the highest derivatives in a linear elliptic equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 31-43. http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a2/
[1] Lavrent'ev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza [Ill-posed problems of mathematical physics and analysis], Nauka, Moscow, 1980, 288 pp. | MR
[2] Kabanikhin S. I., Obratnye i nekorrektnye zadachi [Inverse and ill-posed problems], Nauka, Moscow, 2009, 458 pp.
[3] Iskenderov A. D., “Some inverse problems on the determination of right-hand parts of differential equations”, Izv. Akad. Nauk Az. SSR, 1976, no. 2, 58–63 | MR | Zbl
[4] Iskenderov A. D., “Inverse problem about the determination of the coefficients of a quasilinear elliptic equation”, Izv. Akad. Nauk Az. SSR, 1978, no. 2, 80–85 | MR | Zbl
[5] Iskenderov A. D., “The inverse problem of the determination of the coefficients in an elliptic equation”, Differ. Equ., 15 (1979), 605–612 | MR | Zbl | Zbl
[6] Temirbulatov S. I., Obratnye zadachi dlia ellipticheskikh uravnenii [Inverse problems for elliptic equations], Kazakh. Univ., Alma-Ata, 1975, 72 pp. | MR | Zbl
[7] Klibanov M. V., “A two-dimensional inverse problem for an elliptic equation”, Differ. Uravn., 19:6 (1983), 1072–1074 | MR | Zbl
[8] Klibanov M. V., “Inverse problems in the “large” and Carleman bounds”, Differ. Equ., 20:6 (1984), 755–760 | MR | Zbl
[9] Klibanov M. V., “Uniqueness in the large of solutions of inverse problems for a class of differential equations”, Differ. Equ., 20:11 (1984), 1390–1395 | MR | Zbl
[10] Khaidarov A., “One class of inverse problems for elliptic equations”, Dokl. Akad. Nauk SSSR, 277:6 (1984), 1335–1337 | MR
[11] Khaidarov A., “On an inverse problem for elliptic equations”, Nekotorye zadachi matematicheskoi fiziki i analiza [Some Problems of Mathematical Physics and Analysis], Nauka, Siberian Branch, Novosibirsk, 1984, 245–249
[12] Vabishchevich P. N., “An inverse problem for reconstructing the right-hand side of an elliptic equation and its numerical solution”, Differ. Equ., 21 (1985), 201–207 | MR | Zbl | Zbl
[13] Vabishchevich P. N., “Uniqueness of solutions of some inverse problems for elliptic equations”, Differ. Equ., 24:12 (1988), 1443–1446 | MR | Zbl
[14] Solov'ev V. V., “Inverse problems for elliptic equations on the plane. I.”, Differ. Equ., 42:8 (2006), 1170–1179 | DOI | MR | Zbl
[15] Solov'ev V. V., “Source and coefficient inverse problems for an elliptic equation in a rectangle”, Comput. Math. Math. Phys., 47:8 (2007), 1310–1322 | DOI | MR
[16] Sylvester J., Uhlmann G., “A Global Uniqueness Theorem for an Inverse Boundary Value Problem”, Annals of Mathematics, 125:1, 153–169 | DOI | MR | Zbl
[17] Yang R., Ou Y., “Inverse coefficient problems for nonlinear elliptic equations”, ANZIAM Journal, 49:02 (2008), 271–279 | DOI | MR
[18] Vakhitov I. S., “Inverse problem of identification of the diffusion coefficient in diffision-reaction equation”, Dal'nevost. matem. zhurn., 10:2 (2010), 93–105 | MR
[19] Kozlov V. A., Maz'ya V. G., Fomin A. V., “An iterative method for solving the Cauchy problem for elliptic equations”, U.S.S.R. Comput. Math. Math. Phys., 31:1 (1991), 45–52 | MR | Zbl | Zbl
[20] Johansson T., “An iterative procedure for solving a Cauchy problem for second order elliptic equations”, Mathematische Nachrichten, 272:1 (2004), 46–54 | DOI | MR | Zbl
[21] Aliyev R. A., “The uniqueness theorem of an inverse problem for a quasilinear elliptic equation”, Izvestiia vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2012, no. 5, 5–10
[22] Aliyev R. A., “The uniqueness theorem of an inverse problem for a quasilinear elliptic equation”, Matem. modelirovanie i kraev. zadachi, Samara State Technical Univ., Samara, 2010, 13–15
[23] Ladyzhenskaya O. A., Ural'tseva N. N., Lineinye i kvazilineinye uravneniia ellipticheskogo tipa [Linear and quasilinear equations of elliptic type], Nauka, Moscow, 1973, 576 pp. | MR | Zbl
[24] Miranda C., Partial differential equations of elliptic type, Springer Verlag, Berlin, Heidelberg, New York, 1970, xii+370 pp. | MR | Zbl