On the determination of the unknown coefficients of the highest derivatives in a linear elliptic equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 31-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inverse problems on restoration of coefficients to the differential equations with partial derivatives are of interest in many applied researches. These problems lead to necessity of the approached decision of inverse problems for the equations of mathematical physics which are incorrect in classical sense. In the article the existence, uniqueness and stability of the solution of the given inversion problem for the elliptic equation are proved.
Keywords: inverse problem, successive approximations method, existence and uniqueness of solutions.
Mots-clés : elliptic equation
@article{VSGTU_2014_3_a2,
     author = {R. A. Aliev},
     title = {On the determination of the unknown coefficients of the highest derivatives in a linear elliptic equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {31--43},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a2/}
}
TY  - JOUR
AU  - R. A. Aliev
TI  - On the determination of the unknown coefficients of the highest derivatives in a linear elliptic equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 31
EP  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a2/
LA  - ru
ID  - VSGTU_2014_3_a2
ER  - 
%0 Journal Article
%A R. A. Aliev
%T On the determination of the unknown coefficients of the highest derivatives in a linear elliptic equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 31-43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a2/
%G ru
%F VSGTU_2014_3_a2
R. A. Aliev. On the determination of the unknown coefficients of the highest derivatives in a linear elliptic equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 31-43. http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a2/

[1] Lavrent'ev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza [Ill-posed problems of mathematical physics and analysis], Nauka, Moscow, 1980, 288 pp. | MR

[2] Kabanikhin S. I., Obratnye i nekorrektnye zadachi [Inverse and ill-posed problems], Nauka, Moscow, 2009, 458 pp.

[3] Iskenderov A. D., “Some inverse problems on the determination of right-hand parts of differential equations”, Izv. Akad. Nauk Az. SSR, 1976, no. 2, 58–63 | MR | Zbl

[4] Iskenderov A. D., “Inverse problem about the determination of the coefficients of a quasilinear elliptic equation”, Izv. Akad. Nauk Az. SSR, 1978, no. 2, 80–85 | MR | Zbl

[5] Iskenderov A. D., “The inverse problem of the determination of the coefficients in an elliptic equation”, Differ. Equ., 15 (1979), 605–612 | MR | Zbl | Zbl

[6] Temirbulatov S. I., Obratnye zadachi dlia ellipticheskikh uravnenii [Inverse problems for elliptic equations], Kazakh. Univ., Alma-Ata, 1975, 72 pp. | MR | Zbl

[7] Klibanov M. V., “A two-dimensional inverse problem for an elliptic equation”, Differ. Uravn., 19:6 (1983), 1072–1074 | MR | Zbl

[8] Klibanov M. V., “Inverse problems in the “large” and Carleman bounds”, Differ. Equ., 20:6 (1984), 755–760 | MR | Zbl

[9] Klibanov M. V., “Uniqueness in the large of solutions of inverse problems for a class of differential equations”, Differ. Equ., 20:11 (1984), 1390–1395 | MR | Zbl

[10] Khaidarov A., “One class of inverse problems for elliptic equations”, Dokl. Akad. Nauk SSSR, 277:6 (1984), 1335–1337 | MR

[11] Khaidarov A., “On an inverse problem for elliptic equations”, Nekotorye zadachi matematicheskoi fiziki i analiza [Some Problems of Mathematical Physics and Analysis], Nauka, Siberian Branch, Novosibirsk, 1984, 245–249

[12] Vabishchevich P. N., “An inverse problem for reconstructing the right-hand side of an elliptic equation and its numerical solution”, Differ. Equ., 21 (1985), 201–207 | MR | Zbl | Zbl

[13] Vabishchevich P. N., “Uniqueness of solutions of some inverse problems for elliptic equations”, Differ. Equ., 24:12 (1988), 1443–1446 | MR | Zbl

[14] Solov'ev V. V., “Inverse problems for elliptic equations on the plane. I.”, Differ. Equ., 42:8 (2006), 1170–1179 | DOI | MR | Zbl

[15] Solov'ev V. V., “Source and coefficient inverse problems for an elliptic equation in a rectangle”, Comput. Math. Math. Phys., 47:8 (2007), 1310–1322 | DOI | MR

[16] Sylvester J., Uhlmann G., “A Global Uniqueness Theorem for an Inverse Boundary Value Problem”, Annals of Mathematics, 125:1, 153–169 | DOI | MR | Zbl

[17] Yang R., Ou Y., “Inverse coefficient problems for nonlinear elliptic equations”, ANZIAM Journal, 49:02 (2008), 271–279 | DOI | MR

[18] Vakhitov I. S., “Inverse problem of identification of the diffusion coefficient in diffision-reaction equation”, Dal'nevost. matem. zhurn., 10:2 (2010), 93–105 | MR

[19] Kozlov V. A., Maz'ya V. G., Fomin A. V., “An iterative method for solving the Cauchy problem for elliptic equations”, U.S.S.R. Comput. Math. Math. Phys., 31:1 (1991), 45–52 | MR | Zbl | Zbl

[20] Johansson T., “An iterative procedure for solving a Cauchy problem for second order elliptic equations”, Mathematische Nachrichten, 272:1 (2004), 46–54 | DOI | MR | Zbl

[21] Aliyev R. A., “The uniqueness theorem of an inverse problem for a quasilinear elliptic equation”, Izvestiia vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2012, no. 5, 5–10

[22] Aliyev R. A., “The uniqueness theorem of an inverse problem for a quasilinear elliptic equation”, Matem. modelirovanie i kraev. zadachi, Samara State Technical Univ., Samara, 2010, 13–15

[23] Ladyzhenskaya O. A., Ural'tseva N. N., Lineinye i kvazilineinye uravneniia ellipticheskogo tipa [Linear and quasilinear equations of elliptic type], Nauka, Moscow, 1973, 576 pp. | MR | Zbl

[24] Miranda C., Partial differential equations of elliptic type, Springer Verlag, Berlin, Heidelberg, New York, 1970, xii+370 pp. | MR | Zbl