Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_3_a11, author = {V. N. Maklakov}, title = {Estimation of the {Order} of the {Matrix} {Method} {Approximation} of {Numerical} {Integration} of {Boundary-Value} {Problems} for {Inhomogeneous} {Linear} {Ordinary} {Differential} {Equations} of the {Second} {Order}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {143--160}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a11/} }
TY - JOUR AU - V. N. Maklakov TI - Estimation of the Order of the Matrix Method Approximation of Numerical Integration of Boundary-Value Problems for Inhomogeneous Linear Ordinary Differential Equations of the Second Order JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 143 EP - 160 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a11/ LA - ru ID - VSGTU_2014_3_a11 ER -
%0 Journal Article %A V. N. Maklakov %T Estimation of the Order of the Matrix Method Approximation of Numerical Integration of Boundary-Value Problems for Inhomogeneous Linear Ordinary Differential Equations of the Second Order %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 143-160 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a11/ %G ru %F VSGTU_2014_3_a11
V. N. Maklakov. Estimation of the Order of the Matrix Method Approximation of Numerical Integration of Boundary-Value Problems for Inhomogeneous Linear Ordinary Differential Equations of the Second Order. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 143-160. http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a11/
[1] Keller H. B., “Accurate Difference Methods for Nonlinear Two-point Boundary Value Problems”, SIAM J. Numer. Anal., 11:2 (1974), 305–320 | DOI | MR | Zbl
[2] Lentini M., Pereyra V., “A Variable Order Finite Difference Method for Nonlinear Multipoint Boundary Value Problems”, Mathematics of Computation, 28:128 (1974), 981–1003 | DOI | MR | Zbl
[3] Keller H. B., “Numerical Solution of Boundary Value Problems for Ordinary Differential equations: Survey and Some Resent Results on Difference Methods”, Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations, ed. A. K. Aziz, Academic Press, New York, 1975, 27–88 | DOI | MR
[4] Godunov S. K., Ryaben'kii V. S., Difference schemes. An introduction to the underlying theory, Studies in Mathematics and its Applications, 19, North-Holland, Amsterdam, New York, Oxford, Tokyo, 1987, xvii+489 pp. | DOI | MR | MR | Zbl | Zbl
[5] Samarskii A. A., The theory of difference schemes, Pure and Applied Mathematics, 240, Marcel Dekker, New York, NY, 2001, 786 pp. | DOI | MR | MR | Zbl | Zbl
[6] Formaleev V. F., Reviznikov D. L., Chislennye metody [Numerical Methods], Fizmatlit, Moscow, 2004, 400 pp. (In Russian)
[7] Boutayeb A., Chetouani A., “Global Extrapolations of Numerical Methods for a Parabolic Problem with Nonlocal Boundary Conditions”, International Journal of Computer Mathematics, 80:6 (2003), 789–797 | DOI | MR | Zbl
[8] Boutayeb A., Chetouani A., “A Numerical Comparison of Different Methods Applied to the Solution of Problems with Non Local Boundary Conditions”, Applied Mathematical Sciences, 1:44 (2007), 2173–2185 | MR
[9] V. P. Radchenko, A. A. Usov, “Modified grid method for solving linear differential equation equipped with variable coefficients based on Taylor series”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2008, no. 2(17), 60–65 (In Russian) | DOI | MR
[10] Maklakov V. N., “Numerical integration of the mixed boundary value problems for the second order inhomogeneous linear ordinary differential equations by a matrix method”, Sovremennyi nauchnyi vestnik, 2013, no. 16 (155), 72–78 (In Russian)
[11] Maklakov V. N., Usov A. A., “Numerical integration of the boundary value problems for the second order nonlinear ordinary differential equations by a matrix method with the use of iterative procedures”, Proceedings of the Ninth All-Russian Scientific Conference with international participation (21–23 May 2013). Part 3, Matem. Mod. Kraev. Zadachi, Samara State Technical Univ., Samara, 2013, 35–42 (In Russian)
[12] Turchak L. I., Osnovy chislennykh metodov [Foundations of numerical methods], Nauka, Moscow, 1987, 320 pp. (In Russian) | MR | Zbl
[13] Zaks L., Statisticheskoe otsenivanie [Statistical Estimation], Statistika, Moscow, 1976, 598 pp. (In Russian) | MR