Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_3_a10, author = {A. I. Zhdanov and I. A. Mikhaylov}, title = {A {Method} of {Extended} {Normal} {Equations} {for~Tikhonov's} {Regulatization} {Problems} {with~Differentiation} {Operator}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {132--142}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a10/} }
TY - JOUR AU - A. I. Zhdanov AU - I. A. Mikhaylov TI - A Method of Extended Normal Equations for~Tikhonov's Regulatization Problems with~Differentiation Operator JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 132 EP - 142 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a10/ LA - ru ID - VSGTU_2014_3_a10 ER -
%0 Journal Article %A A. I. Zhdanov %A I. A. Mikhaylov %T A Method of Extended Normal Equations for~Tikhonov's Regulatization Problems with~Differentiation Operator %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 132-142 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a10/ %G ru %F VSGTU_2014_3_a10
A. I. Zhdanov; I. A. Mikhaylov. A Method of Extended Normal Equations for~Tikhonov's Regulatization Problems with~Differentiation Operator. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 132-142. http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a10/
[1] Abdelmalek N. N., “A program for the solution of ill-posed linear systems arising from the discretization of the Fredholm integral equation of the first kind”, Computer Physics Communications, 58:3 (1990), 285–292 | DOI
[2] Delves L. M., Mohamed J. L., Computational Methods for Integral Equations, Cambridge University Press, Cambridge, 1985, 376+xii pp. | DOI | MR | Zbl
[3] Hansen P. C., “REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems”, Numerical Algorithms, 6:1 (1994), 1–35 | DOI | MR | Zbl
[4] Bouhamidi A., Jbilou K., Reichel L., Sadok H., “An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure”, Linear Algebra and Its Applications, 434:7 (2011), 1677–1688 | DOI | MR | Zbl
[5] Tikhonov A. N., Arsenin V. Y., Solutions of ill-posed problems, Scripta Series in Mathematics, John Wiley Sons, New York, 1977, 258+xiii pp. | MR | MR | Zbl
[6] Phillips D. L., “A technique for the numerical solution of certain integral equations of the first kind”, JACM, 9:1 (1962), 84–97 | DOI | Zbl
[7] Björck Å., Eldén L., Methods in numerical algebra for ill-posed problems, Technical Report LiTH-MAT-R33-1979, Linköping University, Dept. of Mathematics, 1979, 267 pp.
[8] Wing G. M., A Primer on Integral Equations of the First Kind, Other Titles in Applied Mathematics, Los Alamos National Laboratory, Los Alamos, New Mexico, 1991, 141+xiv pp. | DOI | MR
[9] Bauer F., Lukas M. A., “Comparingparameter choice methods for regularization of ill-posed problems”, Mathematics and Computers in Simulation, 81:9 (2011), 1795–1841 | DOI | MR | Zbl
[10] Liu C.-S., “A dynamical Tikhonov regularization for solving ill-posed linear algebraic systems”, Acta Applicandae Mathematicae, 123:1 (2013), 285–307 | DOI | MR | Zbl
[11] Hansen P. C., “Regularization Tools version 4.0 for Matlab 7.3”, Numer. Algor., 46:2 (2007), 189–194 | DOI | MR | Zbl
[12] Zhdanov A. I., “The method of augmented regularized normal equations”, Comput. Math. Math. Phys., 52:2 (2012), 194–197 | DOI | MR | Zbl | Zbl
[13] Stor N. J., Slapničar I., Barlow J. L., “Accurate eigenvalue decomposition of real symmetric arrowhead matrices and applications”, Linear Algebra and its Application, 464:1 (2015), 62–89, arXiv: [math.NA] 1302.7203 | DOI | MR | Zbl
[14] Demmel J. W., Applied Numerical Linear Algebra, Other Titles in Applied Mathematics, University of California, Berkeley, 1997, 416+xi pp. | DOI | MR