A criterion for the unique solvability of the Dirichlet spectral problem in a cylindrical domain for multidimensional hyperbolic equations with wave operator
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 21-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Dirichlet spectral problem with the homogeneous boundary conditions in a cylindrical domain of Euclidean space for multidimensional hyperbolic equation with wave operator. We construct the solution as an expansion in multidimensional spherical functions; prove the existence and uniqueness theorems. The obtained conditions of the problem unique solvability essentially depend on the “height” of the cylinder.
Keywords: multidimensional hyperbolic equation, Dirichlet spectral problem, multidimensional cylindrical domain, solvability, uniqueness.
@article{VSGTU_2014_3_a1,
     author = {S. A. Aldashev},
     title = {A criterion for the unique solvability of the {Dirichlet} spectral problem in a cylindrical domain for multidimensional hyperbolic equations with wave operator},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {21--30},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a1/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - A criterion for the unique solvability of the Dirichlet spectral problem in a cylindrical domain for multidimensional hyperbolic equations with wave operator
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 21
EP  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a1/
LA  - ru
ID  - VSGTU_2014_3_a1
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T A criterion for the unique solvability of the Dirichlet spectral problem in a cylindrical domain for multidimensional hyperbolic equations with wave operator
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 21-30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a1/
%G ru
%F VSGTU_2014_3_a1
S. A. Aldashev. A criterion for the unique solvability of the Dirichlet spectral problem in a cylindrical domain for multidimensional hyperbolic equations with wave operator. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2014), pp. 21-30. http://geodesic.mathdoc.fr/item/VSGTU_2014_3_a1/

[1] Moiseev E. I., Uravneniya smeshannogo tipa so spektral'nym parametrom [Equations of mixed type with a spectral parameter], Moscow State Univ. Publ., Moscow, 1988, 150 pp. | MR | Zbl

[2] Kal'menov T. Sh., Kraevye zadachi dlia lineinykh uravnenii v chastnykh proizvodnykh giperbolicheskogo tipa [Boundary value problems for linear partial differential equations of hyperbolic type], Gylym, Shymkent, 1993, 328 pp.

[3] Khe K. Ch., “On eigenfunctions of homogeneous boundary value problems for an elliptic equation with Bessel operators”, Nonclassical equations of mathematical physics, Sobolev Institute of Mathematics Publ., Novosibirsk, 2000, 128–135 | Zbl

[4] Sabitov K. B., Il'yasov R. R., “On the ill-posedness of boundary value problems for a class of hyperbolic equations”, Russian Math. (Iz. VUZ), 45:5 (2001), 56–60 | MR | Zbl

[5] Aldashev, S. A., “Special Darboux–Protter problems for a class of multidimensional hyperbolic equations”, Ukr. Math. J., 55:1 (2003), 126–135 | DOI | MR | Zbl

[6] Aldashev S. A., “A criterion for the existence of eigenfunctions of the Darboux–Protter spectral problem for degenerating multidimensional hyperbolic equations”, Differ. Equ., 41:6 (2005), 833–839 | DOI | MR | Zbl

[7] Aldashev S. A., “A criterion for the existence of eigenfunctions of the spectral Darboux–Protter problems for the multidimensional Euler–Darboux–Poisson equation”, Russian Math. (Iz. VUZ), 50:2 (2006), 1–8 | MR | Zbl

[8] Mikhlin S. G., Multidimensional Singular Integrals and Integral Equations, International Series of Monographs in Pure and Applied Mathematics, 83, Pergamon Press, 1965, xii+259 pp. | MR | MR | Zbl | Zbl

[9] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1965, 703 pp. ; Kamke E., Differentialgleichungen. Lösungsmethoden und Lösungen, v. I, Gewöhnliche Differentialgleichungen, B. G. Teubner, Stuttgart, 1977, xxvi+668 pp. ; v. II, Partielle Differentialgleichungen erster Ordnung für eine gesuchte Funktion, B. G. Teubner, Stuttgart, 1979, xiii+243 pp. (In German) | MR | Zbl | MR | Zbl | Zbl

[10] Higher transcendental functions, v. II, Bateman Manuscript Project, California Institute of Technology, ed. A. Erdélyi, Robert E. Krieger Publishing Company, Malabar, Florida, 1981, xviii+396 pp. | MR | Zbl | Zbl

[11] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsional'nogo analiza [Elements of the theory of functions and functional analysis], Nauka, Moscow, 1972, 496 pp. | MR | Zbl

[12] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, International Series of Monographs on Pure and Applied Mathematics, 39, Pergamon Press, Oxford etc., 1963, xvi+765 pp. | MR | MR | Zbl | Zbl

[13] Aldashev S. A., “Correctness of the Dirichlet problem in a cylindrical domain for multidimensional hyperbolic equations with wave operator”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 13:1 (2011), 21–29

[14] Smirnov V. I., Lehrgang der höheren Mathematik, v. 4, Teil 2, VEB Deutscher Verlag der Wissenschaften, Berlin, 1989, 469 pp. (In German) | Zbl

[15] Aldashev S. A., “The Well-Posedness of the Dirichlet Problem in the Cylindric Domain for the Multidimensional Wave Equation”, Mathematical Problems in Engineering, 2010 (2010), 653215, 7 pp. | DOI | MR | Zbl