Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_2_a8, author = {V. A. Petushkov}, title = {Boundary {Integral} {Equation} {Method} in the {Modeling} of {Nonlinear} {Deformation} and {Failure} {of~the~3D~Inhomogeneous} {Media}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {96--114}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a8/} }
TY - JOUR AU - V. A. Petushkov TI - Boundary Integral Equation Method in the Modeling of Nonlinear Deformation and Failure of~the~3D~Inhomogeneous Media JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 96 EP - 114 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a8/ LA - ru ID - VSGTU_2014_2_a8 ER -
%0 Journal Article %A V. A. Petushkov %T Boundary Integral Equation Method in the Modeling of Nonlinear Deformation and Failure of~the~3D~Inhomogeneous Media %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 96-114 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a8/ %G ru %F VSGTU_2014_2_a8
V. A. Petushkov. Boundary Integral Equation Method in the Modeling of Nonlinear Deformation and Failure of~the~3D~Inhomogeneous Media. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 96-114. http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a8/
[1] S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, International Series of Monographs in Pure and Applied Mathematics, 83, Pergamon Press, New York, 1965, xii+259 pp. | MR | MR | Zbl
[2] V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, T. V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, New York, 1979, xix+929 pp. | MR | Zbl
[3] K. Hayami, “Variable Transformations for Nearly Singular Integrals in the Boundary Element Method”, Publ. Res. Inst. Math. Sci., 41 (2005), 821–842 | DOI | MR | Zbl
[4] V. A. Petushkov, “Numerical realization of the method of boundary integral equations as applied to nonlinear problems of mechanics of deformation and fracture of volume bodies”, Model. Mekh., 3(30):1 (1989), 133–156 (In Russian) | Zbl
[5] S. Rjasanow, O. Steinbach, The fast solution of boundary integral equations, Mathematical and Analytical Techniques with Applications to Engineering, Springer, Heidelberg, 2007, xi+279 pp. | DOI | MR | Zbl
[6] Y. J. Liu, S. Mukherjee, N. Nishimura, M. Schanz, W. Ye, A. Sutradhar, E. Pan, N. A. Dumont, A. Frangi, A. Saez, “Recent Advances and Emerging Applications of the Boundary Element Method”, Appl. Mech. Rev., 64:3 (2012), 030802, 38 pp. | DOI
[7] N. A. Makhutov, V. A. Petushkov, V. I. Zysin, “Using the method of boundary integral equations for the numerical solution of volume problems of nonlinear fracture mechanics”, Strength of Materials, 20:7 (1988), 833–841 | DOI
[8] V. A. Petushkov, V. I. Zysin, ““MEGRE-3D” software package for numerical simulation of nonlinear processes of deformation and fracture 3D bodies. Algorithms and implementation in OS ES”, Programmnoye obespecheniye matematicheskogo modelirovaniya [Software for Mathematical Simulation], Nauka, Moscow, 1992, 111–126 (In Russian)
[9] G. C. Hsiao, O. Steinbach, W. L. Wendland, “Domain decomposition methods via boundary integral equations”, J. Comp. Appl. Math., 125:1–2 (2000), 521–537 | DOI | MR | Zbl
[10] V. A. Petushkov, R. M. Shneiderovich, “Thermoelastic plastic deformation of corrugated shells of revolution at finite displacements”, Strength of Materials, 11:6 (1979), 578–585 | DOI
[11] J. Nečas, I. Hlaváček, Mathematical Theory of Elastic and Elasto-Plastic Bodies — An Introduction, Studies in Applied Mechanics, 3, Elsevier Sci. Publ. Co., Amsterdam, New York, 1980, 342 pp. | DOI | MR
[12] W. L. Wendland, “On Some Mathematical Aspects of Boundary Element Methods for Elliptic Problems”, The mathematics of finite elements and applications, v. V, ed. J. R. Whiteman, Acad. Press Inc., New York, 1985, 193–227 | DOI | MR
[13] M. Costabel, “Boundary Integral Operators on Lipschitz Domains: Elementary Results”, SIAM J. Math. Anal., 19:3 (1988), 613–626 | DOI | MR | Zbl
[14] G. Strang, G. Fix, An Analysis of the Finite Element Method, 2nd edition, Wellesley-Cambridge Press, Wellesley, MA, 2008, 400 pp. ; G. Streng, D. Fiks, Teoriya metoda konechnykh elementov, Mir, M., 1977, 294 pp. | MR | Zbl | MR
[15] J. M. Crotty, “A block equation solver for large unsymmetric matrices arising in the boundary integral equation method”, Int. J. Numer. Meth. Engng., 18:7 (1982), 997–1017 | DOI | Zbl
[16] V. A. Petushkov, A. F. Anikin, “Investigation of the fracture of three-dimensional elastic bodies with cracks”, Soviet Applied Mechanics, 22:9 (1986), 815–822 | DOI
[17] A. F. Anikin, V. A. Petushkov, ““SAPR-82” software package and the computational aspects of the computer modeling of three-dimensional deformation and failure processes of structures at elevated temperatures”, Strength of Materials, 19:7 (1987), 944–951 | DOI
[18] K. Park, G. H. Paulino, “Cohesive Zone Models: A Critical Review of Traction-Separation Relationships Across Fracture Surfaces”, Appl. Mech. Rev., 64:6 (2013), 060802, 20 pp. | DOI
[19] G. C. Hsiao, W. L. Wendland, Boundary Integral Equations, Applied Mathematical Sciences, 164, Springer, Berlin, 2008, xix+618 pp. | DOI | MR | Zbl
[20] I. S. Raju, J. C. Newman Jr., “Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates”, Engng. Fracture Mech., 11:4 (1979), 817–829 | DOI