A~Longitudinal Stability of a~Ribbed Cover in~a~Multimodulus Elastic Medium
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 89-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability of a longitudinal compressed hinge-supported cylindrical cover stiffened by stringers and located on the border of two Winkler's ambiences is considered. The derivation of the equations was carried out under the assumptions: using a simplified theory of Donnell–Vlasov, axisymmetric deformation of a cover, only normal load acts on the shell. The problem is solved using a combined exhaustive search algorithm. This method includes full and local search of variants to search a form deflection and a critical force. Full search of variants is required to construct a form deflection of a shell. Local search of variants is necessary to clarify a critical force. As a result of numerical experiments we found out that increasing the number of stringers reinforces the shell. These results are consistent with the results obtained in the other works.
Keywords: stability, hinge-supported cylindrical cover, combined exhaustive search algorithm.
@article{VSGTU_2014_2_a7,
     author = {A. Korablev and E. I. Mikhailovskii and E. V. Tulubenskaja and N. A. Belyaeva},
     title = {A~Longitudinal {Stability} of {a~Ribbed} {Cover} {in~a~Multimodulus} {Elastic} {Medium}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {89--95},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a7/}
}
TY  - JOUR
AU  - A. Korablev
AU  - E. I. Mikhailovskii
AU  - E. V. Tulubenskaja
AU  - N. A. Belyaeva
TI  - A~Longitudinal Stability of a~Ribbed Cover in~a~Multimodulus Elastic Medium
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 89
EP  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a7/
LA  - ru
ID  - VSGTU_2014_2_a7
ER  - 
%0 Journal Article
%A A. Korablev
%A E. I. Mikhailovskii
%A E. V. Tulubenskaja
%A N. A. Belyaeva
%T A~Longitudinal Stability of a~Ribbed Cover in~a~Multimodulus Elastic Medium
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 89-95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a7/
%G ru
%F VSGTU_2014_2_a7
A. Korablev; E. I. Mikhailovskii; E. V. Tulubenskaja; N. A. Belyaeva. A~Longitudinal Stability of a~Ribbed Cover in~a~Multimodulus Elastic Medium. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 89-95. http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a7/

[1] E. I. Mikhailovsky, Matematicheskiye modeli mekhaniki uprugikh tel [Mathematical models of elastic bodies], Syktyvkar Univ. Press, Syktyvkar, 2007, 516 pp. (In Russian)

[2] V. V. Novozhilov, K. F. Chernykh, E. I. Mikhailovsky, Lineynaya teoriya tonkikh obolochek [Linear Theory of Thin Shells], Politekhnika, Leningrad, 1991, 656 pp. (In Russian) | MR

[3] A. S. Vol'mir, Ustoychivost' deformiruyemykh sistem [Stability of Deformable Systems], Nauka, Moscow, 1969, 984 pp. (In Russian)

[4] A. P. Filin, Elementy teorii obolochek [Elements of Shells Theory], Stroyizdat, Leningrad, 1989, 384 pp. (In Russian)

[5] E. I. Mikhailovsky, Elementy konstruktivno-nelineynoy mekhaniki [Elements of constructive nonlinear mechanics], Syktyvkar Univ. Press, Syktyvkar, 2011, 201 pp. (In Russian)

[6] Ye. I. Mikhailovskii, Yu. V. Tulubenskaya, “An algorithm for the local exhaustive search for alternatives in an essentially non-linear eigenvalue problem”, J. Appl. Math. Mech., 74:2 (2010), 214–222 | DOI | MR

[7] D. S. Watkins, Fundamentals of matrix computations, John Wiley Sons, New York, 2002, xiii+620 pp. | DOI | MR

[8] M. Panju, “Iterative Methods for Computing Eigenvalues and Eigenvector”, The Waterloo Mathematics Review, 1 (2011), 9–19, arXiv: [math.NA] 1105.1185