The Stress-strain State of the Rubber-metal Seismic Bearing
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 64-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to elaboration of finite element approach for the numerical analysis of parameters of the stress-strain state of the rubber-metal seismic bearing under viscoelastic deformation in the presence of layers of porous rubber. Elastic characteristics of porous rubber were determined by self-consistency method for the spherical pores. The integral relations on the basis of Boltzmann–Volterra hereditary theory have been used for viscoelastic behavior modeling. The exponential core containing instant and long elastic characteristics of the material has been used as core of relaxation. The finite element model of deforming the construction with spatial discretization and time discretization was built on the basis of the variational principle. The resulting system of resolving equations contains the additional load vector modeling the rheological constituents of the deformation process; a modified Newton–Kantorovich method has been used to solve this system. For increasing the accuracy of numerical results the precise finite element moment scheme with cubic approximation of displacements has been applied. The numerical convergence of the finite element schemes has been studied on the example of solution of Lame problem for hollow viscoelastic cylinder made of porous rubber. The rubber-metal seismic bearing was calculated on the assumption of the relaxation of the shift module of porous rubber only. The basic parameters of the stress-strain state have been obtained depending on the time and the applicable stamps of rubber.
Keywords: rubber-metal seismic bearing, finite element moment scheme, cubic approximation, porosity, relaxation core, viscoelasticity.
@article{VSGTU_2014_2_a5,
     author = {S. Gomenjuk and S. Grebenjuk and A. Bova and V. Jurechko},
     title = {The {Stress-strain} {State} of the {Rubber-metal} {Seismic} {Bearing}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {64--81},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a5/}
}
TY  - JOUR
AU  - S. Gomenjuk
AU  - S. Grebenjuk
AU  - A. Bova
AU  - V. Jurechko
TI  - The Stress-strain State of the Rubber-metal Seismic Bearing
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 64
EP  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a5/
LA  - ru
ID  - VSGTU_2014_2_a5
ER  - 
%0 Journal Article
%A S. Gomenjuk
%A S. Grebenjuk
%A A. Bova
%A V. Jurechko
%T The Stress-strain State of the Rubber-metal Seismic Bearing
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 64-81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a5/
%G ru
%F VSGTU_2014_2_a5
S. Gomenjuk; S. Grebenjuk; A. Bova; V. Jurechko. The Stress-strain State of the Rubber-metal Seismic Bearing. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 64-81. http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a5/

[1] V. I. Dyrda, N. I. Lisitsa, N. G. Maryenkov, T. E. Tverdokhleb, E. Yu. Zabolotnaya, N. N. Lisitsa, N. V. Tymko, “The justification and the choice of the rubber-metall seismic bearing parameters”, Geotekhnicheskaya Mekhanika, 2009, no. 84, 17–23 (In Russian)

[2] A. A. Chylbak, “The technique of evaluating strength structure located on the seismic isolation system”, Vestnik Tuvinskogo gosuniversiteta, 2013, no. 3, Tekhnicheskie i fiziko-matematicheskie nauki, 65–70 (In Russian)

[3] V. V. Motorin, Development, research and implementation of vibration protection method for buildings using replaceable multilayer rubber isolators, Thesis of Cand. Sci. Dissertation, Moscow, 2005, 19 pp. (In Russian)

[4] O. A. Kovalchuk, D. A. Zubkov, P. I. Andreeva, “A study of the efficiency of rubber-and-metal vibroisolators produced by the “Vibroseismozashtshita” company with respect to the frame buildings erected near shallow underground railway tunnels”, Vestnik MGSU, 2011, no. 6, 335–340 (In Russian)

[5] Yu. G. Kozub, Stress-strain state of rubber-metal vibration and seismic isolators, Modern Problems and Ways of Their Solution in Science, Transport, Production and Education'2012 (8–27 December, 2012), 2012, 10 pp. (In Russian) http://www.sworld.com.ua/konfer29/1109.pdf

[6] E. E. Lavendelis, Design of Rubber-Technical Construction Elements, Mashinostroenie, Moscow, 1976, 232 pp. (In Russian)

[7] S. I. Dymnikov, “Calculation of rubber engineering components for average deformations”, Polymer Mechanics, 4:2 (1968), 206–210 | DOI

[8] V. L. Biderman, N. .A. Sukhova, “Calculation of cylindrical and rectangular long rubber shock compression”, Raschety na prochnost', 1968, no. 13, 55–72 (In Russian)

[9] V. I. Dyrda, N. I. Lisitsa, A. V. Novikova, S. N. Grebenjuk, Yu. G. Kozub, A. A. Bova, “Determination of the stress-strain state of rubber-metal seismic bearing”, Metodi rozv'yazuvannya prikladnikh zadach mekhaniki deformivnogo tverdogo tila [Methods of Solving Applied Problems in Solids Mechanics], v. 13, Lira, Dnipropetrovsk, 2012, 152–158 (In Russian) http://dspace.luguniv.edu.ua/jspui/handle/123456789/441

[10] V. M. Malkov, Mekhanika mnogosloynykh elastomernykh konstruktsiy [Mechanics of Multilayers Elastomeric Structures], St. Petersburg University Press, St. Petersburg, 1998, 320 pp. (In Russian)

[11] V. V. Kirichevskiy, Metod konechnykh elementov v mekhanike elastomerov [Finite Element Method in Mechanics of Elastomers], Naukova Dumka, Kiev, 2002, 655 pp. (In Russian)

[12] V. L. Narusberg, G. A. Teters, Ustoychivost' i optimizatsiya obolochek iz kompozitov [Stability and Optimization of a Shell Made of Composite Materials], Zinatne, Riga, 1988, 299 pp. (In Russian) | Zbl

[13] M. S. Koval'chenko, “Mechanical properties of isotropic porous materials. I. Elastic and rheological properties”, Powder Metallurgy and Metal Ceramics, 32:3 (1993), 268–273 | DOI

[14] R. W. Lewis, B. A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, Wiley, Chichester, 1998 | Zbl

[15] E. Bemer, M. Boutéca, O. Vincké, N. Hoteit, O. Ozanam, “Poromechanics: from linear poroelasticity to non-linear poroelasticity and poroviscoelasticity”, Oil Gas Science and Technology – Rev. IFP, 56:6 (2001), 531–544 | DOI

[16] X. Chateau, L. Dormieux, “Micromechanics of saturated and unsaturated porous media”, Int. J. Numer. Anal. Meth. Geomech., 26:8 (2002), 831–844 | DOI | Zbl

[17] O. Coussy, R. Eymard, “Non-Linear Binding and the Diffusion–Migration Test”, Transport in Porous Media, 53:1 (2003), 51–74 | DOI

[18] V. V. Kirichevskii, A. S. Sakharov, Nelineynyye zadachi termomekhaniki konstruktsiy iz slaboszhimayemykh elastomerov [Nonlinear Problems of the Thermomechanics of Structures of Weakly Compressible Elastomers], Budivel'nyk, Kiev, 1992, 216 pp. (In Russian)

[19] S. M. Grebenjuk, V. Z. Yurechko, “Definition of stress-strain state for constructions made of porous materials”, Problemi obchislyuval'noi mekhaniki i mitsnosti konstruktsiy [Problems of Computational Mechanics and Strength of Structures], v. 15, Lira, Dnipropetrovsk, 2011, 60–69 (In Ukrainian)

[20] A. S. Sakharov, V. N. Kislookiy, V. V. Kirichevskiy, I. Al'tenbakh, U. Gabbert, J. Dankert, Kh. Keppler, Z. Kochyk, Metod konechnykh elementov v mekhanike tvordykh tel [Finite Elements Method in Solid Mechanics], Vishcha shkola, Kiev, 1982, 480 pp. (In Russian)

[21] S. N. Grebenjuk, A. A. Bova, “Improving the accuracy of moment finite element schemes for slightly compressible materials”, Sovremennyye problemy i puti ikh resheniya v nauke, transporte, proizvodstve, obrazovanii [Modern Problems and Their Solutions in Science, Transportation, Manufacturing, Education], Collection of Scientific Papers Based on International Scientific and Practical Conference, v. 22, Chernomor'ye, Odessa, 2009, 55–64 (In Russian)

[22] V. V. Kirichevskiy, B. M. Dokhnyak, YU. G. Kozub, S. I. Gomenjuk, R. V. Kirichevskiy, S. N. Grebenjuk, Metod konechnykh elementov v vychislitel'nom komplekse “MIRELA+” [Finite element method in obtained complex “MIRELA+”], Naukova dumka, Kiev, 2005, 416 pp. (In Russian)

[23] V. I. Samul, Osnovy teorii uprugosti i plastichnosti [Fundamentals of the theory of elasticity and plasticity], Vysshaya shkola, Moscow, 1982, 264 pp. (In Russian) | Zbl