Investigations of the Numerical Range of a Operator Matrix
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 50-63

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a $2\times2$ operator matrix $A$ (so-called generalized Friedrichs model) associated with a system of at most two quantum particles on ${\mathrm d}-$ dimensional lattice. This operator matrix acts in the direct sum of zero- and one-particle subspaces of a Fock space. We investigate the structure of the closure of the numerical range $W(A)$ of this operator in detail by terms of its matrix entries for all dimensions of the torus ${\mathbf T}^{\mathrm d}$. Moreover, we study the cases when the set $W(A)$ is closed and give necessary and sufficient conditions under which the spectrum of $A$ coincides with its numerical range.
Keywords: operator matrix, generalized Friedrichs model, Fock space, numerical range, point and approximate point spectra, annihilation and creation operators, first Schur compliment.
@article{VSGTU_2014_2_a4,
     author = {T. H. Rasulov and E. B. Dilmurodov},
     title = {Investigations of the {Numerical} {Range} of a {Operator} {Matrix}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {50--63},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a4/}
}
TY  - JOUR
AU  - T. H. Rasulov
AU  - E. B. Dilmurodov
TI  - Investigations of the Numerical Range of a Operator Matrix
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 50
EP  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a4/
LA  - ru
ID  - VSGTU_2014_2_a4
ER  - 
%0 Journal Article
%A T. H. Rasulov
%A E. B. Dilmurodov
%T Investigations of the Numerical Range of a Operator Matrix
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 50-63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a4/
%G ru
%F VSGTU_2014_2_a4
T. H. Rasulov; E. B. Dilmurodov. Investigations of the Numerical Range of a Operator Matrix. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 50-63. http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a4/