Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_2_a4, author = {T. H. Rasulov and E. B. Dilmurodov}, title = {Investigations of the {Numerical} {Range} of a {Operator} {Matrix}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {50--63}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a4/} }
TY - JOUR AU - T. H. Rasulov AU - E. B. Dilmurodov TI - Investigations of the Numerical Range of a Operator Matrix JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 50 EP - 63 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a4/ LA - ru ID - VSGTU_2014_2_a4 ER -
%0 Journal Article %A T. H. Rasulov %A E. B. Dilmurodov %T Investigations of the Numerical Range of a Operator Matrix %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 50-63 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a4/ %G ru %F VSGTU_2014_2_a4
T. H. Rasulov; E. B. Dilmurodov. Investigations of the Numerical Range of a Operator Matrix. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 50-63. http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a4/
[1] O. Toeplitz, “Das algebraische Analogon zu einem Satze von Fejér”, Math. Z., 2:1–2 (1918), 187–197 | DOI | MR | Zbl
[2] F. Hausdorff, “Der Wertvorrat einer Bilinearform”, Math. Z., 3:1 (1919), 314–316 | DOI | MR | Zbl
[3] A. Wintner, “Zur Theorie der beschränkten Bilinearformen”, Math. Z., 30:1 (1929), 228–281 | DOI | MR
[4] H. Langer, A. S. Markus, V. I. Matsaev, C. Tretter, “A new concept for block operator matrices: the quadratic numerical range”, Linear Algebra Appl., 330:1–3 (2001), 89–112 | DOI | MR | Zbl
[5] C. Tretter, M. Wagenhofer, “The block numerical range of an $n \times n$ block operator matrix”, SIAM. J. Matrix Anal. Appl., 24:4 (2003), 1003–1017 | DOI | MR | Zbl
[6] L. Rodman, I. M. Spitkovsky, “Ratio numerical ranges of operators”, Integr. Equ. Oper. Theory, 71:2 (2011), 245–257 | DOI | MR | Zbl
[7] W. S. Cheung, X. Liu, T. Y. Tam, “Multiplicities, boundary points and joint numerical ranges”, Operators and Matrices, 5:1 (2011), 41–52 | DOI | MR | Zbl
[8] H. L. Gau , C. K. Li, Y. T. Poon, N. S. Sze, “Higher rank numerical ranges of normal matrices”, SIAM. J. Matrix Anal. Appl., 32 (2011), 23–43, arXiv: [math.FA] 0902.4869 | DOI | MR | Zbl
[9] B. Kuzma, C. K. Li, L. Rodman, “Tracial numerical range and linear dependence of operators”, Electronic J. Linear Algebra, 22 (2011), 22–52 http://eudml.org/doc/223236 | MR | Zbl
[10] C. K. Li, Y. T. Poon, “Generalized numerical range and quantum error correction”, J. Operator Theory, 66:2 (2011), 335–351 http://www.mathjournals.org/jot/2011-066-002/2011-066-002-004.html | MR | Zbl
[11] K. Gustafson, D. K. M. Rao, Numerical range: The field of values of linear operators and matrices, Springer, Berlin, 1997, xiv+190 pp. | MR
[12] D. S. Keeler, L. Rodman, I. M. Spitkovsky, “The numerical range of $3 \times 3$ matrices”, Linear Algebra and its Appl., 252:1–3 (1997), 115–139 | DOI | MR | Zbl
[13] H.-L. Gau, “Elliptic numerical range of $4 \times 4$ matrices”, Taiwanese J. Math., 10:1 (2006), 117–128 | MR | Zbl
[14] D. Henrion, “Semidefinite geometry of the numerical range”, Electronic J. Linear Algebra, 20 (2010), 322–332 , arXiv: [math.OC] http://eudml.org/doc/2297100812.1624 | MR | Zbl
[15] R. A. Minlos, Ya. G. Sinai, “Spectra of stochastic operators arising in lattice models of a gas”, Theoret. and Math. Phys., 2:2 (1970), 167–176 | DOI | MR
[16] M. A. Lavrentiev, B. V. Shabat, Problemy gidrodinamiki i ikh matematicheskie modeli [Problems of Hydrodynamics and their Mathematical Models], Nauka, Moscow, 1973, 416 pp. (In Russian) | MR
[17] A. I. Mogilner, “Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators: problems and results”, Adv. Soviet Math., 5 (1991), 139–194 | MR | Zbl
[18] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978, 396 pp. ; M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 430 pp. | MR | Zbl | MR | Zbl
[19] M. Salomyak, M. Birman, Spektral'naya teoriya samosopryazhennykh operatorov v gil'bertovom prostranstve [Spectral Theory of Self-Adjoint Operators in Hilbert Space], Leningrad State University Press, Leningrad, 1980, 264 pp. (In Russian) | MR
[20] T. H. Rasulov, Kh. Kh. Turdiev, “Some spectral properties of a generalized Friedrichs model”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2(23) (2011), 181–188 (In Russian) | DOI