Investigations of the Numerical Range of a Operator Matrix
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 50-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a $2\times2$ operator matrix $A$ (so-called generalized Friedrichs model) associated with a system of at most two quantum particles on ${\mathrm d}-$ dimensional lattice. This operator matrix acts in the direct sum of zero- and one-particle subspaces of a Fock space. We investigate the structure of the closure of the numerical range $W(A)$ of this operator in detail by terms of its matrix entries for all dimensions of the torus ${\mathbf T}^{\mathrm d}$. Moreover, we study the cases when the set $W(A)$ is closed and give necessary and sufficient conditions under which the spectrum of $A$ coincides with its numerical range.
Keywords: operator matrix, generalized Friedrichs model, Fock space, numerical range, point and approximate point spectra, annihilation and creation operators, first Schur compliment.
@article{VSGTU_2014_2_a4,
     author = {T. H. Rasulov and E. B. Dilmurodov},
     title = {Investigations of the {Numerical} {Range} of a {Operator} {Matrix}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {50--63},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a4/}
}
TY  - JOUR
AU  - T. H. Rasulov
AU  - E. B. Dilmurodov
TI  - Investigations of the Numerical Range of a Operator Matrix
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 50
EP  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a4/
LA  - ru
ID  - VSGTU_2014_2_a4
ER  - 
%0 Journal Article
%A T. H. Rasulov
%A E. B. Dilmurodov
%T Investigations of the Numerical Range of a Operator Matrix
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 50-63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a4/
%G ru
%F VSGTU_2014_2_a4
T. H. Rasulov; E. B. Dilmurodov. Investigations of the Numerical Range of a Operator Matrix. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 50-63. http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a4/

[1] O. Toeplitz, “Das algebraische Analogon zu einem Satze von Fejér”, Math. Z., 2:1–2 (1918), 187–197 | DOI | MR | Zbl

[2] F. Hausdorff, “Der Wertvorrat einer Bilinearform”, Math. Z., 3:1 (1919), 314–316 | DOI | MR | Zbl

[3] A. Wintner, “Zur Theorie der beschränkten Bilinearformen”, Math. Z., 30:1 (1929), 228–281 | DOI | MR

[4] H. Langer, A. S. Markus, V. I. Matsaev, C. Tretter, “A new concept for block operator matrices: the quadratic numerical range”, Linear Algebra Appl., 330:1–3 (2001), 89–112 | DOI | MR | Zbl

[5] C. Tretter, M. Wagenhofer, “The block numerical range of an $n \times n$ block operator matrix”, SIAM. J. Matrix Anal. Appl., 24:4 (2003), 1003–1017 | DOI | MR | Zbl

[6] L. Rodman, I. M. Spitkovsky, “Ratio numerical ranges of operators”, Integr. Equ. Oper. Theory, 71:2 (2011), 245–257 | DOI | MR | Zbl

[7] W. S. Cheung, X. Liu, T. Y. Tam, “Multiplicities, boundary points and joint numerical ranges”, Operators and Matrices, 5:1 (2011), 41–52 | DOI | MR | Zbl

[8] H. L. Gau , C. K. Li, Y. T. Poon, N. S. Sze, “Higher rank numerical ranges of normal matrices”, SIAM. J. Matrix Anal. Appl., 32 (2011), 23–43, arXiv: [math.FA] 0902.4869 | DOI | MR | Zbl

[9] B. Kuzma, C. K. Li, L. Rodman, “Tracial numerical range and linear dependence of operators”, Electronic J. Linear Algebra, 22 (2011), 22–52 http://eudml.org/doc/223236 | MR | Zbl

[10] C. K. Li, Y. T. Poon, “Generalized numerical range and quantum error correction”, J. Operator Theory, 66:2 (2011), 335–351 http://www.mathjournals.org/jot/2011-066-002/2011-066-002-004.html | MR | Zbl

[11] K. Gustafson, D. K. M. Rao, Numerical range: The field of values of linear operators and matrices, Springer, Berlin, 1997, xiv+190 pp. | MR

[12] D. S. Keeler, L. Rodman, I. M. Spitkovsky, “The numerical range of $3 \times 3$ matrices”, Linear Algebra and its Appl., 252:1–3 (1997), 115–139 | DOI | MR | Zbl

[13] H.-L. Gau, “Elliptic numerical range of $4 \times 4$ matrices”, Taiwanese J. Math., 10:1 (2006), 117–128 | MR | Zbl

[14] D. Henrion, “Semidefinite geometry of the numerical range”, Electronic J. Linear Algebra, 20 (2010), 322–332 , arXiv: [math.OC] http://eudml.org/doc/2297100812.1624 | MR | Zbl

[15] R. A. Minlos, Ya. G. Sinai, “Spectra of stochastic operators arising in lattice models of a gas”, Theoret. and Math. Phys., 2:2 (1970), 167–176 | DOI | MR

[16] M. A. Lavrentiev, B. V. Shabat, Problemy gidrodinamiki i ikh matematicheskie modeli [Problems of Hydrodynamics and their Mathematical Models], Nauka, Moscow, 1973, 416 pp. (In Russian) | MR

[17] A. I. Mogilner, “Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators: problems and results”, Adv. Soviet Math., 5 (1991), 139–194 | MR | Zbl

[18] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978, 396 pp. ; M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 430 pp. | MR | Zbl | MR | Zbl

[19] M. Salomyak, M. Birman, Spektral'naya teoriya samosopryazhennykh operatorov v gil'bertovom prostranstve [Spectral Theory of Self-Adjoint Operators in Hilbert Space], Leningrad State University Press, Leningrad, 1980, 264 pp. (In Russian) | MR

[20] T. H. Rasulov, Kh. Kh. Turdiev, “Some spectral properties of a generalized Friedrichs model”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2(23) (2011), 181–188 (In Russian) | DOI