Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_2_a3, author = {T. K. Yuldashev}, title = {A {Double} {Inverse} {Problem} for {Fredholm} {Integro-Differential} {Equation} of {Elliptic} {Type}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {39--49}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a3/} }
TY - JOUR AU - T. K. Yuldashev TI - A Double Inverse Problem for Fredholm Integro-Differential Equation of Elliptic Type JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 39 EP - 49 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a3/ LA - ru ID - VSGTU_2014_2_a3 ER -
%0 Journal Article %A T. K. Yuldashev %T A Double Inverse Problem for Fredholm Integro-Differential Equation of Elliptic Type %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 39-49 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a3/ %G ru %F VSGTU_2014_2_a3
T. K. Yuldashev. A Double Inverse Problem for Fredholm Integro-Differential Equation of Elliptic Type. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 39-49. http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a3/
[1] A. A. Andreev, J. O. Yakovleva, “The characteristic problem for the system of the general hyperbolic differential equations of the third order with nonmultiple characteristics”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 1(30), 31–36 (In Russian) | DOI
[2] M. Kh. Beshtokov, “Metod Rimana dlya resheniya nelokalnykh kraevykh zadach dlya psevdoparabolicheskikh uravnenii tretego poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2013, no. 4(33), 15–24 (In Russian) | DOI | Zbl
[3] V. A. Zolotarev, “Direct and inverse problems for an operator with nonlocal potential”, Sb. Math., 203:12 (2012), 1785–1807 | DOI | DOI | MR | Zbl | Zbl
[4] V. V. Karachik, “On solvability conditions for a Neumann problem for a polyharmonic equation in the unit ball”, Sib. Zh. Ind. Mat., 16:4 (2013), 61–74 (In Russian) | MR | Zbl
[5] M. O. Korpusov, “Solution blow-up for a class of parabolic equations with double nonlinearity”, Sb. Math., 204:3 (2013), 323–346 | DOI | DOI | MR | Zbl | Zbl
[6] L. S. Pul'kina, “A nonlocal problem for a hyperbolic equation with integral conditions of the 1st kind with time-dependent kernels”, Russian Math. (Iz. VUZ), 56:10 (2012), 26–37 | DOI | MR | Zbl
[7] O. A. Repin, S. K. Kumykova, “Problem with shift for the third-order equation with discontinuous coefficients”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 4(29), 17–25 (In Russian) | DOI | MR
[8] K. B. Sabitov, G. Yu. Udalova, “Boundary value problem for mixed type equation of the third order with periodic conditions”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 3(32), 29–45 (In Russian) | DOI | Zbl
[9] G. A. Sviridyuk, S. A. Zagrebina, “Nonclassical Mathematical Physics Models”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 14, 7–18 (In Russian) | Zbl
[10] T. K. Yuldashev, “On solvability of a mixed value problem for nonlinear partial differential equation of higher order”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 4(33), 46–57 (In Russian) | DOI | MR | Zbl
[11] N. V. Beylina, “On solvability of a inverse problem for hyperbolic equation with an integral overdetermination condition”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 2(23), 34–39 (In Russian) | DOI
[12] A. M. Denisov, Vvedeniye v teoriyu obratnykh zadach [Introduction to the theory of inverse problem], Moscow State Univ. Press, Moscow, 1994, 285 pp. (In Russian)
[13] A. M. Denisov, S. I. Solov'eva, “Inverse problem for the diffusion equation in the case of spherical symmetry”, Comput. Math. Math. Phys., 52:11 (2013), 1607–1613 | DOI | DOI | MR | Zbl
[14] M. M. Lavrent'ev, L. Ya. Savel'ev, Linear operators and ill-posed problems, Consultants Bureau, New York, 1995, xiv+382 pp. | MR | Zbl
[15] V. A. Popova, A. V. Glushak, “Inverse problem for singular evolution equation with nonlocal boundary conditin”, Vestn. Voronezh. Gos. Univ. Ser. Fiz. Matem., 2012, no. 1, 182–186 (In Russian) | MR | Zbl
[16] V. G. Romanov, Inverse Problems of Mathematical Physics, VNU Science Press, Utrecht, 1987, vii+224 pp. | MR | MR
[17] K. B. Sabitov, N. V. Martem'yanova, “An inverse problem for an equation of elliptic-hyperbolic type with a nonlocal boundary condition”, Siberian Math. J., 53:3 (2012), 507–519 | DOI | MR | Zbl
[18] G. Henkin, V. Michel, “Inverse Dirichlet-to-Neumann problem for nodal curves”, Russian Math. Surveys, 67:6 (2012), 1069–1089 | DOI | DOI | MR | Zbl | Zbl
[19] T. K. Yuldashev, “Inverse problem for a nonlinear integro-differential equation of the third order”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2013, no. 9/1(110), 58–66 (In Russian) | Zbl
[20] T. K. Yuldashev, “An inverse problem for nonlinear integro-differential equations of higher order”, Vestn. Voronezh. Gos. Univ. Ser. Fiz. Matem., 2014, no. 1, 145–155 (In Russian)
[21] T. K. Yuldashev, “On the inverse problem for the quasilinear partial differential equation of the first order”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 2, 56–62 (In Russian) | MR
[22] T. K. Yuldashev, “An inverse problem for a system of partial quasilinear equations of the first order”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2012, no. 6, 11(270), 35–41 (In Russian) | Zbl
[23] T. K. Yuldashev, “Inverse problem for nonlinear partial differential equation with high order pseudoparabolic operator”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 3(28), 17–29 (In Russian) | DOI | Zbl
[24] T. K. Yuldashev, “An inverse problem for a nonlinear integro-differential equations with hyperbolic operator of the higher degree”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013), 69–75 (In Russian) | MR | Zbl
[25] T. K. Yuldashev, A. I. Seredkina, “Inverse problem for quazilinear partial integro-differential equations of higher order”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 3(32), 46–55 (In Russian) | DOI | Zbl
[26] T. K. Yuldashev, “On solvability of mixed value problem for linear parabolo-hyperbolic Fredholm integro-differential equation”, Zhurnal SVMO, 15:3 (2013), 158–163 (In Russian) | Zbl