On Leibniz--Poisson Special Polynomial Identities
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 9-15

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study Leibniz–Poisson algebras satisfying polynomial identities. We study Leibniz–Poisson special and Leibniz–Poisson extended special polynomials. We show that the sequence of codimensions $\{r_n({\mathbf V})\}_{n\geq 1}$ of every extended special space of variety ${\mathbf V}$ of Leibniz-Poisson algebras over an arbitrary field is either bounded by a polynomial or at least exponential. Furthermore, if this sequence is bounded by polynomial then there is a polynomial $R(x)$ with rational coefficients such that $r_n({\mathbf V}) = R(n)$ for all sufficiently large n. It follows that there exists no variety of Leibniz-Poisson algebras with intermediate growth of the sequence $\{r_n({\mathbf V})\}_{n\geq 1}$ between polynomial and exponential. We present lower and upper bounds for the polynomials $R(x)$ of an arbitrary fixed degree.
Keywords: Leibniz algebra, variety of algebras.
Mots-clés : Leibniz–Poisson algebra
@article{VSGTU_2014_2_a18,
     author = {S. M. Ratseev and O. I. Cherevatenko},
     title = {On {Leibniz--Poisson} {Special} {Polynomial} {Identities}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {9--15},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a18/}
}
TY  - JOUR
AU  - S. M. Ratseev
AU  - O. I. Cherevatenko
TI  - On Leibniz--Poisson Special Polynomial Identities
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 9
EP  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a18/
LA  - ru
ID  - VSGTU_2014_2_a18
ER  - 
%0 Journal Article
%A S. M. Ratseev
%A O. I. Cherevatenko
%T On Leibniz--Poisson Special Polynomial Identities
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 9-15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a18/
%G ru
%F VSGTU_2014_2_a18
S. M. Ratseev; O. I. Cherevatenko. On Leibniz--Poisson Special Polynomial Identities. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 9-15. http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a18/