Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_2_a16, author = {L. N. Krivonosov and V. A. Luk'yanov}, title = {Gauge-invariant {Tensors} of {4-Manifold} with {Conformal} {Torsion-free} {Connection} and their {Applications} for {Modeling} of {Space-time}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {180--198}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a16/} }
TY - JOUR AU - L. N. Krivonosov AU - V. A. Luk'yanov TI - Gauge-invariant Tensors of 4-Manifold with Conformal Torsion-free Connection and their Applications for Modeling of Space-time JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 180 EP - 198 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a16/ LA - ru ID - VSGTU_2014_2_a16 ER -
%0 Journal Article %A L. N. Krivonosov %A V. A. Luk'yanov %T Gauge-invariant Tensors of 4-Manifold with Conformal Torsion-free Connection and their Applications for Modeling of Space-time %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 180-198 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a16/ %G ru %F VSGTU_2014_2_a16
L. N. Krivonosov; V. A. Luk'yanov. Gauge-invariant Tensors of 4-Manifold with Conformal Torsion-free Connection and their Applications for Modeling of Space-time. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 180-198. http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a16/
[1] L. N. Krivonosov, V. A. Luk'yanov, “Einstein's equations on a $4$-manifold of conformal torsion-free connection”, J. Sib. Fed. Univ. Math. Phys., 5:3 (2012), 393–408 (In Russian)
[2] L. N. Krivonosov, V. A. Luk'yanov, “The relationship between the Einstein and Yang-Mills equations”, Russian Math. (Iz. VUZ), 53:9 (2009), 62–66 | DOI | MR | Zbl
[3] L. N. Krivonosov, V. A. Luk'yanov, “Connection of Young-Mills Equations with Einstein and Maxwell's Equations”, J. Sib. Fed. Univ. Math. Phys., 2:4 (2009), 432–448 (In Russian)
[4] L. N. Krivonosov, V. A. Luk'yanov, “The full decision of Young–Mills equations for the central-symmetric metrics”, J. Sib. Fed. Univ. Math. Phys., 4:3 (2011), 350–362 (In Russian)
[5] L. N. Krivonosov, V. A. Luk'yanov, “Purely time-dependent solutions to the Yang–Mills equations on a $4$-dimensional manifold with conformal torsion-free connection”, J. Sib. Fed. Univ. Math. Phys., 6:1 (2013), 40–52
[6] L. N. Krivonosov, V. A. Luk'yanov, “Solution of Yang–Mills equations for central-cymmenric metric in the presence of electromagnetic field”, Prostranstvo, vremya i fundamental'nyye vzaimodeystviya, 2013, no. 3, 54–63 (In Russian)
[7] É. Kartan, Prostranstva affinnoy, proektivnoy i konformnoy svyaznosti [Space of affine, projective and conformal connection], Kazan University Publ., Kazan, 1962, 210 pp. (In Russian) | MR
[8] M. Korzyński, J. Lewandowski, “The normal conformal Cartan connection and the Bach tensor”, Class. Quantum Grav., 20:16 (2003), 3745, arXiv: gr-qc/0301096 | DOI | MR | Zbl
[9] S. A. Merkulov, “Twistor connection and conformal gravitation”, Theoret. and Math. Phys., 60:2 (1984), 842–845 | DOI | MR | Zbl
[10] S. A. Merkulov, “A conformally invariant theory of gravitation and electromagnetism”, Class. Quantum Grav., 1:4 (1984), 349 | DOI | MR
[11] C. Kozameh, E. T. Newman, P. Nurowski, “Conformal Einstein equations and Cartan conformal connection”, Class. Quantum Grav., 20:14 (2003), 3029, arXiv: gr-qc/0302080 | DOI | MR | Zbl
[12] E. Gallo, C. Kozameh, E. T. Newman, K. Perkins, “Cartan normal conformal connections from pairs of second-order PDEs”, Class. Quantum Grav., 21:17 (2004), 4063, arXiv: gr-qc/0404072 | DOI | MR | Zbl
[13] K. Perkins, The Cartan-Weyl Conformal Geometry of a Pair of Second-OrderPartial-Differential Equations, Doctoral Dissertation, University of Pittsburgh, 2006 http://d-scholarship.pitt.edu/8445/
[14] A. P. Trunev, “Quark dynamics in atomic nuclei and quark shells”, Scientific Journal of KubSAU, 2013, no. 86(02), 59, 27 pp. http://ej.kubagro.ru/2013/02/pdf/59.pdf
[15] A. P. Trunev, “Cosmology of inhomogeneous rotating universe and reality show”, Scientific Journal of KubSAU, 2014, no. 95(01), 28, 30 pp. http://ej.kubagro.ru/2014/01/pdf/28.pdf
[16] L. D. Landau, E. M. Lifshitz, Teoriya polya [Field Theory], Teoreticheskaya fizika [Theoretical Physics], 2, Nauka, Moscow, 1973, 504 pp. (In Russian) | MR