Influence of dislocation density of nickel on dissolution kinetics in acidic chloride electrolyte
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 149-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

An influence of dislocation density of nickel's anode on the density of anode current and the homogeneity of anode's dissolution along the surface in the acidic chloride electrolyte was studied. To create the dislocation density of about $10^9$ cm$^{-2}$, nickel was annealed at the temperature of $ 900~^\circ \mathrm С$ for 0.5 hour. To raise the dislocation density up to $10^{10}$ cm$^{-2}$, nickel was deformed by 15 % through forging. It was detected that an increase of dislocation density of one order of magnitude enlarged the density of anode current by several times over. An electrochemical etching of annealed nickel was occurring fairly even along the surface of sample revealing the well-formed grain structure. Dissolution of deformed nickel was uneven along the surface, and the grain structure was not discovered.
Keywords: nickel dislocation density anode current density, etching
Mots-clés : grain structure.
@article{VSGTU_2014_2_a13,
     author = {A. D. Vasilyev},
     title = {Influence of dislocation density of nickel on dissolution kinetics in acidic chloride electrolyte},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {149--155},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a13/}
}
TY  - JOUR
AU  - A. D. Vasilyev
TI  - Influence of dislocation density of nickel on dissolution kinetics in acidic chloride electrolyte
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 149
EP  - 155
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a13/
LA  - ru
ID  - VSGTU_2014_2_a13
ER  - 
%0 Journal Article
%A A. D. Vasilyev
%T Influence of dislocation density of nickel on dissolution kinetics in acidic chloride electrolyte
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 149-155
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a13/
%G ru
%F VSGTU_2014_2_a13
A. D. Vasilyev. Influence of dislocation density of nickel on dissolution kinetics in acidic chloride electrolyte. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 149-155. http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a13/

[1] Tao Zhang, Yawei Shao, Guozhe Meng, Zhongyu Cui, Fuhui Wang, “Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior”, Corrosion Science, 53:2 (2011), 1960–1968 | DOI

[2] T. Balusamy, Satendra Kumar, T.S.N. Sankara Narayanan, “Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel”, Corrosion Science, 52:11 (2010), 3826–3834 | DOI

[3] K. Gopala Krishna, K. Sivaprasad, T.S.N. Sankara Narayanan, K.C. Hari Kumar, “Localized corrosion of an ultrafine grained Al–4Zn–2Mg alloy produced by cryorolling”, Corrosion Science, 60:1 (2012), 82–89 | DOI

[4] K. D. Ralston, D. Fabijanic, N. Birbilis, “Effect of grain size on corrosion of high purity aluminium”, Electrochimica Acta, 56:4 (2011), 1729–1736 | DOI

[5] Hiroyuki Miyamoto, Kohei Harada, Takuro Mimaki, Alexei Vinogradov, Satoshi Hashimoto, “Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing”, Corrosion Science, 50:5 (2008), 1215–1220 | DOI

[6] M. Ben-Haroush, G. Ben-Hamu, D. Eliezer, L. Wagner, “The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures”, Corrosion Science, 50:6 (2008), 1766–1778 | DOI

[7] Yongxing Wang, Weimin Zhao, Hua Ai, Xiaoguang Zhou, Timing Zhang, “Effects of strain on the corrosion behaviour of X80 steel”, Corrosion Science, 53:9 (2011), 2761–2766 | DOI

[8] R. K. Ren, S. Zhang, X. L. Pang, K. W. Gao, “A novel observation of the interaction between the macroelastic stress and electrochemical corrosion of low carbon steel in 3.5 wt{%} NaCl solution”, Electrochimica Acta, 85:1 (2012), 283–294 | DOI

[9] Baotong Lu, Jingli Luo, “A phenomenological model for non-Faradaic material loss in flowing electrolyte without solid particle”, Electrochimica Acta, 56:1 (2010), 559–565 | DOI

[10] Z. Y. Liu, X. G. Li, Y. F. Cheng, “In-situ characterization of the electrochemistry of grain and grain boundary of an X70 steel in a near-neutral pH solution”, Electrochemistry Communications, 12:7 (2010), 936–938 | DOI

[11] Yuan Yuan, Liang Li, Chao Wang, Yongyan Zhu, “Study of the effects of hydrogen on the pitting processes of X70 carbon steel with SECM”, Electrochemistry Communications, 12:12 (2010), 1804–1807 | DOI

[12] J. G. Brunner, J. May, H. W. Höppel, M. Göken, S. Virtanen, “Localized corrosion of ultrafine-grained Al–Mg model alloys”, Electrochimica Acta, 55:6 (2010), 1966–1970 | DOI

[13] Koji Fushimi, Takatoshi Shimada, Hiroki Habazaki, Hidetaka Konno, Masahiro Seo, “Mechano-electrochemistry of a passive surfac e using an in situ micro-indentation test”, Electrochimica Acta, 56:4 (2011), 1773–1780 | DOI

[14] A. D. Vasil'ev, “Influence of density of dislocations in Ni and Fe on kinetics of anode process in chloride electrolyte”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 3(28), 208–210 (In Russian) | DOI

[15] Ya. S. Umansky, Yu. A. Skakov, A. N. Ivanov, L. N. Rastorguev, Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, X-Ray Diffraction and Electron] Microscopy, Mettalurgiya, Moscow, 1982, 632 pp. (In Russian)

[16] O. A. Kaibyshev, R. Z. Valiev, Granitsy zeren i svoystva metallov [Grain Boundaries and Properties of Materials], Metallurgiya, Moscow, 1987, 214 pp. (In Russian)