Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_2_a12, author = {O. P. Soldatova and I. A. Lyozin}, title = {Research of {Classification} {Tasks} {Solving} {Using} {Neural} {Fuzzy} {Production} {Based} {Network} {Models} of {Mamdani--Zadeh}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {136--148}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a12/} }
TY - JOUR AU - O. P. Soldatova AU - I. A. Lyozin TI - Research of Classification Tasks Solving Using Neural Fuzzy Production Based Network Models of Mamdani--Zadeh JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 136 EP - 148 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a12/ LA - ru ID - VSGTU_2014_2_a12 ER -
%0 Journal Article %A O. P. Soldatova %A I. A. Lyozin %T Research of Classification Tasks Solving Using Neural Fuzzy Production Based Network Models of Mamdani--Zadeh %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 136-148 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a12/ %G ru %F VSGTU_2014_2_a12
O. P. Soldatova; I. A. Lyozin. Research of Classification Tasks Solving Using Neural Fuzzy Production Based Network Models of Mamdani--Zadeh. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 136-148. http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a12/
[1] L. X. Wang, J. M. Mendel, “Generating fuzzy rules by learning from examples”, IEEE Trans. Syst., Man, Cybern., 22:6 (1992), 1414–1427 | DOI | MR
[2] Li-Xin Wang, “The WM method completed: a flexible fuzzy system approach to data mining”, IEEE Trans. Fuzzy Systems, 11:6 (2003), 768–782 | DOI
[3] L. A. Zadeh, “Fuzzy logic, neural networks, and soft computing”, Communications of the ACM, 37:3 (1994), 77–84 | DOI | MR
[4] E. H. Mamdani, “Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis”, IEEE Trans. Computers, C-26:12, 1182–1191 | DOI
[5] S. Osovskiy, Neyronnyye seti dlya obrabotki informatsii [Neural networks for information processing], Finansy i statistika, Moscow, 2002, 344 pp. (In Russian)
[6] O. P. Soldatova, “Multifunctional simulator of neural networks”, Programmnyye produkty i sistemy, 2012, no. 3, 27–31 (In Russian)
[7] D. Rutkovskaya, M. Pilin'skiy, L. Rutkovskiy, Neyronnyye seti, geneticheskiye algoritmy i nechotkiye sistemy [Neural networks, genetic algorithms and fuzzy systems], Goryachaya liniya–Telekom, M., 2007, 452 pp. (In Russian)
[8] V. Novák, I. Perfilieva, J. Močkoř, Mathematical Principles of Fuzzy Logic, The Springer International Series in Engineering and Computer Science, 517, Springer, 1999, xiii+320 pp. ; V. Novak, I. Perfileva, I. Mochkorzh, Matematicheskie printsipy nechetkoi logiki, M., Fizmatlit, 2006, 352 pp. | DOI | MR
[9] V. V. Borisov, V. V. Kruglov, A. S. Fedulov, Nechetkiye modeli i seti [Fuzzy models and networks], Goryachaya liniya–Telekom, Moscow, 2007, 284 pp.
[10] A. S. Katasev, “Mathematical and software for fuzzy-productions knowledge bases generation of the expert diagnostic systems”, Fundamental'nyye issledovaniya, 2013, no. 10-9, 1922–1927 (In Russian)
[11] V. V. Bukhtoyarov, “Evolutionary three-stage approach for designing of neural networks ensembles for classification problems”, Programmnyye produkty i sistemy, 2012, no. 4, 101–106 (In Russian)