Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_2_a1, author = {O. A. Repin}, title = {Boundary {Value} {Problem} with {Shift} for {One} {Partial} {Differential} {Equation} {Containing} {Partial} {Fractional~Derivative}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {22--32}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a1/} }
TY - JOUR AU - O. A. Repin TI - Boundary Value Problem with Shift for One Partial Differential Equation Containing Partial Fractional~Derivative JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 22 EP - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a1/ LA - ru ID - VSGTU_2014_2_a1 ER -
%0 Journal Article %A O. A. Repin %T Boundary Value Problem with Shift for One Partial Differential Equation Containing Partial Fractional~Derivative %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 22-32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a1/ %G ru %F VSGTU_2014_2_a1
O. A. Repin. Boundary Value Problem with Shift for One Partial Differential Equation Containing Partial Fractional~Derivative. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 22-32. http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a1/
[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya [Integrals and derivatives of fractional order and some of their applications], Nauka i Tekhnika, Minsk, 1987, 688 pp. (In Russian) | MR | Zbl
[2] A. A. Kilbas, O. A. Repin, “Solvability of a boundary value problem for a mixed-type equation with a partial Riemann–Liouville fractional derivative”, Differ. Equ., 46:10 (2010), 1457–1464 | DOI | MR | Zbl
[3] A. A. Kilbas, O. A. Repin, “Analog of the Tricomi problem for differential equations with partial derivatives containing fractional diffusion equation”, Dokl. AMAN, 12:1 (2010), 31–39 (In Russian) | MR
[4] M. Saigo, “A remark on integral operators involving the Gauss hypergeometric functions”, Math. Rep. College General Educ., Kyushu Univ., 11:2 (1978), 135–143 | MR | Zbl
[5] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka [Partial Differential Equations of Fractional Order], Nauka, Moscow, 2005, 199 pp. (In Russian) | MR | Zbl
[6] S. Kh. Gekkieva, “An Analog of the Tricomi Problem for an Equation of Mixed Type with a Fractional Derivative”, Izv. Kabard.-Balkar. Nauchn. Tsentra RAN, 2001, no. 2(7), 78–80 (In Russian)
[7] A. M. Gordeev, “Some Boundary Value Problems for the Generalized Euler–Poisson–Darboux Equation”, Volzh. Mat. Sb., 1968, no. 6, 56–61 (In Russian) | MR
[8] T. V. Shuvalova, “Some Compositional Properties of Generalized Fractional Differentiation Operators”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2006, no. 42, 45–48 (In Russian) | DOI
[9] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady [Integrals and Series], v. 3, Spetsialnye funktsii. Dopolnitelnye glavy [Special features. Additional chapters], Nauka, Moscow, 1986, 800 pp. (In Russian) | MR
[10] O. A. Repin, T. V. Shuvalova, “On the Uniqueness of a Solution of a Nonlocal Boundary Value Problem for an Equation of Mixed Type with Two Degeneration Lines”, Tr. mezhdunar. konf. “Sovremennye metody fiz.-mat. nauk” [Proc. Int. Conf. “Modern Methods in Physical and Mathematical Sciences”], v. 1, Orel, 2006, 106–110 (In Russian)
[11] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions (Bateman Manuscript Project), McGraw-Hill, New York, 1953 | MR | Zbl
[12] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products. 6th ed, Academic Press, San Diego, CA, 2000, xlvii+1163 pp. | MR | MR | Zbl
[13] V. A. Nakhusheva, Differentsial'nye uravneniya matematicheskikh modeley nelokal'nykh protsessov [Differential Equations of Mathematical Models of Non-Local Processes], Nauka, Moscow, 2006, 173 pp. (In Russian) | MR | Zbl
[14] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006, xvi+523 pp. | DOI | MR | Zbl
[15] M. M. Dzhrbashyan, Integral'nye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti [Integral Transforms and Representations of Functions in a Complex Domain], Nauka, Moscow, 1966, 672 pp. (In Russian) | MR | Zbl