On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 16-21

Voir la notice de l'article provenant de la source Math-Net.Ru

We made the comparison study and characterize the spectral properties of differential operators induced by the Dirichlet problem for the hyperbolic system without the lowest terms of the form $$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2} = \lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2} = \lambda{u^2}+ f^2, $$ and for the hyperbolic system with the lowest terms of the form $$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2}+\cfrac{\partial{u^2}}{\partial{x}} =\lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2}+\cfrac{\partial{u^1}}{\partial{x}} = \lambda{u^2}+ f^2, $$, which are considered in the closure $V_{t,x}$ of the bounded domain $\Omega_{t,x}=(0;\pi)^2$ in Euclidean space $\mathbb{R}^2_{t,x}.$ The spectral properties of the boundary value problems for the systems of linear differential equations of the hyperbolic type are investigated in the Hilbert space $\mathcal{H}_{t,x}$ in the terms of spectral closed operators $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x}$. We study the spectra of the closed differential operators $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x},$ induced by the Dirichlet problem for the second order hyperbolic systems: $C\sigma{L}=R\sigma{L}$ — empty set; point spectrum $P\sigma{L}$ is in the real straight line of the complex plane $\mathbb{C}$. The operator $L$ eigen vector functions generate the orthogonal basis for the hyperbolic system without the lowest terms. For the hyperbolic system with the lowest terms the operator $L$ eigen vector functions generate the Riesz basis, nonorthogonal in the Hilbert space $\mathcal{H}_{t,x}.$ The theorems on the structure of the induced by the Dirichlet problem operator $L$ spectrum $\sigma L$ are formulated.
Keywords: hyperbolic systems, boundary value problems, closed operators, spectrum, basis, orthogonal basis, Riesz basis.
@article{VSGTU_2014_2_a0,
     author = {O. V. Alexeeva and V. V. Kornienko and D. V. Kornienko},
     title = {On the {Lowest} by $x$-variable {Terms} {Influence} on the {Spectral} {Properties} of {Dirichlet} {Problem} for the {Hyperbolic} {Systems}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {16--21},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a0/}
}
TY  - JOUR
AU  - O. V. Alexeeva
AU  - V. V. Kornienko
AU  - D. V. Kornienko
TI  - On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 16
EP  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a0/
LA  - ru
ID  - VSGTU_2014_2_a0
ER  - 
%0 Journal Article
%A O. V. Alexeeva
%A V. V. Kornienko
%A D. V. Kornienko
%T On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 16-21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a0/
%G ru
%F VSGTU_2014_2_a0
O. V. Alexeeva; V. V. Kornienko; D. V. Kornienko. On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 16-21. http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a0/