On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 16-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We made the comparison study and characterize the spectral properties of differential operators induced by the Dirichlet problem for the hyperbolic system without the lowest terms of the form $$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2} = \lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2} = \lambda{u^2}+ f^2, $$ and for the hyperbolic system with the lowest terms of the form $$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2}+\cfrac{\partial{u^2}}{\partial{x}} =\lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2}+\cfrac{\partial{u^1}}{\partial{x}} = \lambda{u^2}+ f^2, $$, which are considered in the closure $V_{t,x}$ of the bounded domain $\Omega_{t,x}=(0;\pi)^2$ in Euclidean space $\mathbb{R}^2_{t,x}.$ The spectral properties of the boundary value problems for the systems of linear differential equations of the hyperbolic type are investigated in the Hilbert space $\mathcal{H}_{t,x}$ in the terms of spectral closed operators $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x}$. We study the spectra of the closed differential operators $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x},$ induced by the Dirichlet problem for the second order hyperbolic systems: $C\sigma{L}=R\sigma{L}$ — empty set; point spectrum $P\sigma{L}$ is in the real straight line of the complex plane $\mathbb{C}$. The operator $L$ eigen vector functions generate the orthogonal basis for the hyperbolic system without the lowest terms. For the hyperbolic system with the lowest terms the operator $L$ eigen vector functions generate the Riesz basis, nonorthogonal in the Hilbert space $\mathcal{H}_{t,x}.$ The theorems on the structure of the induced by the Dirichlet problem operator $L$ spectrum $\sigma L$ are formulated.
Keywords: hyperbolic systems, boundary value problems, closed operators, spectrum, basis, orthogonal basis, Riesz basis.
@article{VSGTU_2014_2_a0,
     author = {O. V. Alexeeva and V. V. Kornienko and D. V. Kornienko},
     title = {On the {Lowest} by $x$-variable {Terms} {Influence} on the {Spectral} {Properties} of {Dirichlet} {Problem} for the {Hyperbolic} {Systems}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {16--21},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a0/}
}
TY  - JOUR
AU  - O. V. Alexeeva
AU  - V. V. Kornienko
AU  - D. V. Kornienko
TI  - On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 16
EP  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a0/
LA  - ru
ID  - VSGTU_2014_2_a0
ER  - 
%0 Journal Article
%A O. V. Alexeeva
%A V. V. Kornienko
%A D. V. Kornienko
%T On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 16-21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a0/
%G ru
%F VSGTU_2014_2_a0
O. V. Alexeeva; V. V. Kornienko; D. V. Kornienko. On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2014), pp. 16-21. http://geodesic.mathdoc.fr/item/VSGTU_2014_2_a0/

[1] A. A. Dezin, “Mixed problems for certain symmetric hyperbolic systems”, Dokl. Akad. Nauk SSSR (N.S.), 107:1 (1956), 13–16 (In Russian) | MR | Zbl

[2] A. A. Dezin, “Boundary value problems for certain symmetric linear first order systems”, Mat. Sb. (N.S.), 49(91):4 (1959), 459–484 (In Russian) | Zbl

[3] A. A. Dezin, “Existence and uniqueness theorems for solutions of boundary problems for partial differential equations in function spaces”, Uspekhi Mat. Nauk, 14:3(87) (1959), 21–73 (In Russian) | MR | Zbl

[4] V. K. Romanko, “Mixed boundary value problems for a system of equations”, Sov. Math., Dokl., 33:1 (1986), 38–41 | Zbl

[5] A. A. Dezin, Obshchiye voprosy teorii granichnykh zadach [General questions of the theory of boundary value problems], Nauka, Moscow, 1980, 208 pp. (In Russian) | MR | Zbl

[6] S. Kachmazh, G. Shteyngauz, Teoriya ortogonal'nykh ryadov [Theory of orthogonal series], Fiz.-Mat. Lit., Moscow, 1958, 507 pp. (In Russian) | MR

[7] N. Dunford, J. T. Schwartz, Linear Operators, v. 1, General Theory, John Wiley Sons, New York – London, 1988, xiv+858 pp.

[8] D. V. Kornienko, “On the spectral problems for linear systems of operator-differential equations”, Vestnik Eletsk. Gos. Univ. Bunina. Ser. Mat. Fiz., 5 (2004), 71–78 (In Russian)

[9] D. V. Kornienko, “On a spectral problem for two hyperbolic systems”, Differ. Equ., 42:1 (2006), 101–111 | DOI | MR | Zbl

[10] D. V. Kornienko, “On the spectrum of the Dirichlet problem for systems of operator-differential equations”, Differ. Equ., 42:8 (2006), 1124–1133 | DOI | MR | Zbl

[11] A. A. Dezin, “On weak and strong irregularity”, Differ. Uravn., 17:10 (1981), 1851–1858 (In Russian) | MR

[12] O. V. Alexeeva, “On the spectrum of the Dirichlet problem for two elliptic systems”, Nauchnye Vedomosti Belgorodckogo Gosudarstvennogo Universiteta. Ser. Matematika. Fizika, 17(88):20 (2010), 5–9 (In Russian)