Stress Field Near the Mixed Mode Crack Tip under Plane Stress Conditions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 109-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotical solution to the problem of the mixed loading of the cracked specimen under plane stress conditions in materials with fractional-linear constitutive relations of steady -state creep is given. The stresses and creep strain rates in the vicinity of the mixed mode crack tip are obtained. The type of mixed loading is specified by the mixity parameter which is varying from 0 (this type of loading corresponds to pure shear) to 1 (the loading corresponds to tensile loading). The analytical presentation of the stress and the creep strain rate fields is found for all values of the mixity parameter. It is shown that the stress field consists of different regions inside which the stress components are determined by different formulae. The boundaries of the regions are found numerically. The comparison of the analytical solution with the numeric solution obtained for the power-law material for large values of the exponent $n$ is given.
Keywords: mixed mode (mode I + mode II) loading, asymptotical analysis, the near crack-tip stress field, analytical solution, analytical presentation of the stress field near the crack tip.
@article{VSGTU_2014_1_a9,
     author = {L. V. Stepanova and E. M. Adylina},
     title = {Stress {Field} {Near} the {Mixed} {Mode} {Crack} {Tip} under {Plane} {Stress} {Conditions}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {109--124},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a9/}
}
TY  - JOUR
AU  - L. V. Stepanova
AU  - E. M. Adylina
TI  - Stress Field Near the Mixed Mode Crack Tip under Plane Stress Conditions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 109
EP  - 124
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a9/
LA  - ru
ID  - VSGTU_2014_1_a9
ER  - 
%0 Journal Article
%A L. V. Stepanova
%A E. M. Adylina
%T Stress Field Near the Mixed Mode Crack Tip under Plane Stress Conditions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 109-124
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a9/
%G ru
%F VSGTU_2014_1_a9
L. V. Stepanova; E. M. Adylina. Stress Field Near the Mixed Mode Crack Tip under Plane Stress Conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 109-124. http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a9/

[1] M. Kuna, Finite Elements in Fracture Mechanics, Theory–Numerics–Applications, Solid Mechanics and Its Applications, 201, Springer, Dordrecht, 2013, xxv+464 pp. | DOI | MR | Zbl

[2] L. V. Stepanova, Matematicheskiye metody mekhaniki razrusheniya [Mathematical methods of fracture mechanics], Fizmatlit, Moscow, 2009, 336 pp. (In Russian)

[3] J. Pan, C. Lin, “Analytical solutions for crack-tip sectors in perfectly plastic Mises materials under mixed in-plane and out-of-plane shear loading conditions”, Eng. Frac. Mech., 73:13 (2006), 1797–1813 | DOI

[4] M. Rahman, J. W. Hancock, “Elastic perfectly-plastic asymptotic mixed mode crack tip fields in plane stress”, Int. J. Sol. Struct., 43:13 (2006), 3692–3704 | DOI | Zbl

[5] V. N. Shlyannikov, B. V. Ilchenko, N. V. Boychenko, “Biaxial Loading Effect on Higher-Order Crack Tip Parameters”, J. ASTM International, 5:8 (2008), JAI101548 | DOI

[6] V. N. Shlyannikov, S. Yu. Kislova, “Mode mixity parameters for mathematical crack type”, Izv. Saratov. Univ. Mat. Mekh. Inform., 9:1 (2009), 77–84 (In Russian)

[7] V. N. Shlyannikov, A. V. Tumanov, “Elastic mode mixity parameters for semi-elliptical crack under biaxial loading”, Izv. Saratov. Univ. Mat. Mekh. Inform., 10:2 (2010), 73–80 (In Russian)

[8] V. N. Shlyannikov, “Solution of nonlinear strain and fracture problems for materials in complex stress states”, Phys. Mesomech., 15:3–4 (2012), 176–184 | DOI

[9] S. Yu. Kislova, V. N. Shlyannikov, “Elastic and plastic mode mixity parameters for test specimens with different geometries”, Trudy Akademenergo, 2012, no. 1, 101–112 (In Russian)

[10] K. A. Vansovich, V. I. Yadrov, “Fatigue tests of steel cruciform specimens with the surface crack at biaxial loading”, Omskiy nauchnyy vestnik, 2012, no. 3(113), 117–121 (In Russian)

[11] K. A. Vansovich, V. I. Yadrov, “Experimental research the growth rate of surface cracks in AK6 aluminium alloy and St. 20 steel at biaxial loading”, Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 15:4(2) (2012), 436–438 (In Russian)

[12] V. N. Shlyannikov, A. P. Zakharov, A. A. Gerasimenko, “Fatigue crack growth for steel St-3 under biaxial loading”, Trudy Akademenergo, 2013, no. 4, 91–101 (In Russian)

[13] L. V. Stepanova, T. B. Elekina, “Combined mode loading (normal tracture model and in-plane shear) of the element of construction with in a material with the linear-fractional creep principle”, Vestnik Samarskogo Gosudarstvennogo Universiteta, 2009, no. 2(68), 123–139 (In Russian) | MR

[14] T. E. Gerasimova, P. N. Lomakov, L. V. Stepanova, “Numerical photomechanics. Numerical processing of photoelasticity experiments and its application to the problems of fracture mechanics problems”, Vestnik Samarskogo Gosudarstvennogo Universiteta, 2013, no. 9/2(110), 64–74 (In Russian)

[15] L. V. Stepanova, E. M. Adylina, “Self-similar solution to the problem of mixed deformation of plate with a crack tip in a damaged medium”, Vestnik Samarskogo Gosudarstvennogo Universiteta, 2013, no. 9/1(110), 76–93 (In Russian) | Zbl

[16] L. V. Stepanova, “Eigenvalues of the antiplane-shear crack problem for a power-law material”, J. Appl. Mech. Tech. Phys., 49:1 (2008), 142–147 | DOI | Zbl

[17] L. V. Stepanova, M. E. Fedina, “Self-similar solution of the problem of an antiplane shear crack in a coupled formulation (‘creep-damage’ coupling)”, Vestnik Samarskogo Gosudarstvennogo Universiteta, 2000, no. 4(18), 128–145 (In Russian) | Zbl

[18] L. V. Stepanova, M. E. Fedina, “On the geometry of the completely damaged material region at the antiplane-shear crack tip in the conjugate formulation of the problem (‘creep-damage’ coupling)”, Vestnik Samarskogo Gosudarstvennogo Universiteta, 2001, no. 2(20), 87–113 (In Russian) | MR | Zbl

[19] L. V. Stepanova, M. E. Fedina, “Self-Similar Solution of the Antiplane Shear Fracture Problem in a Coupled Formulation (Creep–Damage)”, J. Appl. Mech. Tech. Phys., 43:5 (2002), 731–738 | DOI | Zbl

[20] E. V. Lomakin, M. A. Melnikov, “Plane stress state of media with plastic properties sensitive to the type of stress”, Computational Continuum Mechanics, 2:2 (2009), 48–64 (In Russian) | DOI

[21] A. M. Melnikov, “Plane stress of a stripe made of a stress-state-dependent material with angular cutouts”, Vestnik Nizhegorodskogo Universiteta im. N. I. Lobachevskogo, 2011, no. 4(5), 2352–2353 (In Russian)

[22] E. V. Lomakin, A. M. Mel'nikov, “Plane stress state problems for notched bodies whose plastic properties depend on the form of the stress state”, Mechanics of Solids, 46:1 (2011), 62–69 | DOI | MR

[23] C. F. Shih, Elastic-plastic analysis of combined mode crack problems, Ph. D. Thesis, Harvard University, Cambridge, M.A., 1973

[24] C. F. Shih, J. W. Hutchinson, “Fully Plastic Solutions and Large Scale Yielding Estimates for Plane Stress Crack Problems”, J. Eng. Mater. Technol., 98:4 (1976), 289–295 | DOI

[25] C. F. Shih, “Small-Scale Yielding Analysis of Mixed Mode Plane-Strain Crack Problems”, Fracture Analysis (STP560), Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II, 1974, STP33141S, 187–210 | DOI | DOI

[26] V. N. Shlyannikov, Elastic-Plastic Mixed-Mode Fracture Criteria and Parameters, Lecture Notes in Applied Mechanics, 7, Springer, Berlin, 2003, viii+246 pp. | DOI | Zbl

[27] Mixed-Mode Crack Behavoir (STP1359), eds. K. J. Miller, D. L. McDowell, 1999, ix+337 pp. | DOI