Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_1_a6, author = {V. A. Kovalev and Yu. N. Radayev}, title = {On {Nonlinear} {Strain} {Vectors} and {Tensors} in {Continuum} {Theories} of {Mechanics}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {66--85}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a6/} }
TY - JOUR AU - V. A. Kovalev AU - Yu. N. Radayev TI - On Nonlinear Strain Vectors and Tensors in Continuum Theories of Mechanics JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 66 EP - 85 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a6/ LA - ru ID - VSGTU_2014_1_a6 ER -
%0 Journal Article %A V. A. Kovalev %A Yu. N. Radayev %T On Nonlinear Strain Vectors and Tensors in Continuum Theories of Mechanics %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 66-85 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a6/ %G ru %F VSGTU_2014_1_a6
V. A. Kovalev; Yu. N. Radayev. On Nonlinear Strain Vectors and Tensors in Continuum Theories of Mechanics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 66-85. http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a6/
[1] N. M. Günter, Kurs variatsionnogo ischisleniya [Course in the Calculus of Variations], Moscow, Leningrad, 1941, 308 pp. (In Russian)
[2] V. L. Berdichevskii, Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M., 1983, 448 pp. ; V. Berdichevsky, Variational Principles of Continuum Mechanics, Interaction of Mechanics and Mathematics, Springer, Heidelberg, Dordrecht, London, New York, 2009 ; | MR | DOI | Zbl | DOI | Zbl
[3] V. A. Kovalev, Yu. N. Radayev, Elementy teorii polya: variatsionnyye simmetrii i geometricheskiye invarianty [Elements of the field theory: variational symmetries and geometric invariants], Fizmatlit, Moscow, 2009, 156 pp. (In Russian)
[4] V. A. Kovalev, YU. N. Radayev, Volnovye zadachi teorii polya i termomekhanika [Wave problems of the field theory and thermomechanics], Saratov Univ. Publ., Saratov, 2010, 328 pp. (In Russian)
[5] L. V. Ovsyannikov, Gruppovoy analiz differentsial'nykh uravneniy [Group analysis of differential equations], Nauka, Moscow, 1978, 400 pp. (In Russian) | MR
[6] R. A. Toupin, “Theories of elasticity with couple-stress”, Arch. Rational Mech. Anal., 17:5 (1964), 85–112 | DOI | MR | Zbl
[7] L. I. Sedov, Vvedeniye v mekhaniku sploshnykh sred [Introduction in continuum mechanics], Fizmatgiz, Moscow, 1962, 284 pp. (In Russian) | MR
[8] A. A. Ilyushin, Mekhanika sploshnykh sred [Continuum mechanics], Moscow University Press, Moscow, 1978, 287 pp. (In Russian)
[9] A. E. Green, J. E. Adkins, Large elastic deformations and non-linear continuum mechanics, Claredon Press, Oxford, 1960, xiii+348 pp. ; A. Grin, Dzh. Adkins, Bolshie uprugie deformatsii i nelineinaya mekhanika sploshnoi sredy, Mir, M., 1965, 456 pp. | MR | Zbl | MR
[10] Yu. N. Radayev, Kontinualnye modeli povrezhdennosti tverdykh tel [A continuum damage model of solid bodies], Dissertation of Doctor of Science (Phys. Math.), Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, 1999, 380 pp. (In Russian)
[11] E. Cosserat, F. Cosserat, Théorie des corps déformables, Librairie Scientifique A. Hermann et Fils, Paris, 1909, 226 pp. (Reprint, 2009)
[12] V. A. Kovalev, Yu. N. Radaev, “Derivation of energy-momentum tensors in theories of micropolar hyperbolic thermoelasticity”, Mechanics of Solids, 46:5 (2011), 705–720 | DOI | MR
[13] V. A. Kovalev, Yu. N. Radayev, “Covariant field formulations and models of non-linear hyperbolic micropolar thermoelasticity”, Sb. dokladov XXXVI Dal'nevostochnoy matematicheskoy shkoly-seminara im. akad. E. V. Zolotova [Proc. of XXXVI Far Eastern Math. School–Seminar of Academician E. V. Zolotov], Vladivostok, 2012, 137–142 pp. (In Russian)
[14] V. A. Kovalev, Yu. N. Radayev, “On precisely conserved quantities of coupled micropolar thermoelastic field”, Izv. Saratov. Univ. Mat. Mekh. Inform., 12:4 (2012), 71–79 (In Russian) | Zbl
[15] V. A. Kovalev, Yu. N. Radayev, “Covariant forms of jump equations on shock surfaces in micropolar thermoelastic continuum: a hyperbolic theory”, Trudy XVI Mezhd. konf. Sovremennyye problemy mekhaniki sploshnoy sredy [Proc. of XVI International Conference on Modern Problems of Continuum Mechanics], v. 2, Rostov-on-Don, 2012, 99–103 (In Russian)