On Nonlinear Strain Vectors and Tensors in Continuum Theories of Mechanics
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 66-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-linear mathematical model of hyperbolic thermoelastic continuum with fine microstructure is proposed. The model is described in terms of $4$-covariant field theoretical formalism. Fine microstructure is represented by $d$-tensors, playing role of extra field variables. A Lagrangian density for hyperbolic thermoelastic continuum with fine microstructure is given and the corresponding least action principle is formulated. $4$-covariant field equations of hyperbolic thermoelasticity are obtained. Constitutive equations of microstructural hyperbolic thermoelasticity are discussed. Virtual microstructural inertia is added to the considered action density. It is also concerned to the thermal inertia. Variational symmetries of the thermoelastic action are used to formulate covariant conservation laws in a plane space–time. For micropolar type-II thermoelastic Lagrangians following the usual procedure independent rotationally invariant functional arguments are obtained. Objective forms of the Lagrangians satisfying the frame indifference principle are given. Those are derived by using extra strain vectors and tensors.
Keywords: thermoelasticity, field, extra field, covariance, conservation law, $d$-tensor, $4$-current, energy–momentum tensor, kinematic constraint, frame indifference principle, extrastrain tensor.
Mots-clés : microstructure, action, Lagrange multiplier, rotation
@article{VSGTU_2014_1_a6,
     author = {V. A. Kovalev and Yu. N. Radayev},
     title = {On {Nonlinear} {Strain} {Vectors} and {Tensors} in {Continuum} {Theories} of {Mechanics}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {66--85},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a6/}
}
TY  - JOUR
AU  - V. A. Kovalev
AU  - Yu. N. Radayev
TI  - On Nonlinear Strain Vectors and Tensors in Continuum Theories of Mechanics
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 66
EP  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a6/
LA  - ru
ID  - VSGTU_2014_1_a6
ER  - 
%0 Journal Article
%A V. A. Kovalev
%A Yu. N. Radayev
%T On Nonlinear Strain Vectors and Tensors in Continuum Theories of Mechanics
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 66-85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a6/
%G ru
%F VSGTU_2014_1_a6
V. A. Kovalev; Yu. N. Radayev. On Nonlinear Strain Vectors and Tensors in Continuum Theories of Mechanics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 66-85. http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a6/

[1] N. M. Günter, Kurs variatsionnogo ischisleniya [Course in the Calculus of Variations], Moscow, Leningrad, 1941, 308 pp. (In Russian)

[2] V. L. Berdichevskii, Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M., 1983, 448 pp. ; V. Berdichevsky, Variational Principles of Continuum Mechanics, Interaction of Mechanics and Mathematics, Springer, Heidelberg, Dordrecht, London, New York, 2009 ; | MR | DOI | Zbl | DOI | Zbl

[3] V. A. Kovalev, Yu. N. Radayev, Elementy teorii polya: variatsionnyye simmetrii i geometricheskiye invarianty [Elements of the field theory: variational symmetries and geometric invariants], Fizmatlit, Moscow, 2009, 156 pp. (In Russian)

[4] V. A. Kovalev, YU. N. Radayev, Volnovye zadachi teorii polya i termomekhanika [Wave problems of the field theory and thermomechanics], Saratov Univ. Publ., Saratov, 2010, 328 pp. (In Russian)

[5] L. V. Ovsyannikov, Gruppovoy analiz differentsial'nykh uravneniy [Group analysis of differential equations], Nauka, Moscow, 1978, 400 pp. (In Russian) | MR

[6] R. A. Toupin, “Theories of elasticity with couple-stress”, Arch. Rational Mech. Anal., 17:5 (1964), 85–112 | DOI | MR | Zbl

[7] L. I. Sedov, Vvedeniye v mekhaniku sploshnykh sred [Introduction in continuum mechanics], Fizmatgiz, Moscow, 1962, 284 pp. (In Russian) | MR

[8] A. A. Ilyushin, Mekhanika sploshnykh sred [Continuum mechanics], Moscow University Press, Moscow, 1978, 287 pp. (In Russian)

[9] A. E. Green, J. E. Adkins, Large elastic deformations and non-linear continuum mechanics, Claredon Press, Oxford, 1960, xiii+348 pp. ; A. Grin, Dzh. Adkins, Bolshie uprugie deformatsii i nelineinaya mekhanika sploshnoi sredy, Mir, M., 1965, 456 pp. | MR | Zbl | MR

[10] Yu. N. Radayev, Kontinualnye modeli povrezhdennosti tverdykh tel [A continuum damage model of solid bodies], Dissertation of Doctor of Science (Phys. Math.), Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, 1999, 380 pp. (In Russian)

[11] E. Cosserat, F. Cosserat, Théorie des corps déformables, Librairie Scientifique A. Hermann et Fils, Paris, 1909, 226 pp. (Reprint, 2009)

[12] V. A. Kovalev, Yu. N. Radaev, “Derivation of energy-momentum tensors in theories of micropolar hyperbolic thermoelasticity”, Mechanics of Solids, 46:5 (2011), 705–720 | DOI | MR

[13] V. A. Kovalev, Yu. N. Radayev, “Covariant field formulations and models of non-linear hyperbolic micropolar thermoelasticity”, Sb. dokladov XXXVI Dal'nevostochnoy matematicheskoy shkoly-seminara im. akad. E. V. Zolotova [Proc. of XXXVI Far Eastern Math. School–Seminar of Academician E. V. Zolotov], Vladivostok, 2012, 137–142 pp. (In Russian)

[14] V. A. Kovalev, Yu. N. Radayev, “On precisely conserved quantities of coupled micropolar thermoelastic field”, Izv. Saratov. Univ. Mat. Mekh. Inform., 12:4 (2012), 71–79 (In Russian) | Zbl

[15] V. A. Kovalev, Yu. N. Radayev, “Covariant forms of jump equations on shock surfaces in micropolar thermoelastic continuum: a hyperbolic theory”, Trudy XVI Mezhd. konf. Sovremennyye problemy mekhaniki sploshnoy sredy [Proc. of XVI International Conference on Modern Problems of Continuum Mechanics], v. 2, Rostov-on-Don, 2012, 99–103 (In Russian)