Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_1_a5, author = {T. K. Yuldashev}, title = {Inverse {Problem} for a {Fredholm} {Third} {Order} {Partial} {Integro-differential} {Equation}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {56--65}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a5/} }
TY - JOUR AU - T. K. Yuldashev TI - Inverse Problem for a Fredholm Third Order Partial Integro-differential Equation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 56 EP - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a5/ LA - ru ID - VSGTU_2014_1_a5 ER -
%0 Journal Article %A T. K. Yuldashev %T Inverse Problem for a Fredholm Third Order Partial Integro-differential Equation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 56-65 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a5/ %G ru %F VSGTU_2014_1_a5
T. K. Yuldashev. Inverse Problem for a Fredholm Third Order Partial Integro-differential Equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 56-65. http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a5/
[1] S. D. Algazin, I. A. Kiyko, Flatter plastin i obolochek [Flutter of plates and shells], Nauka, Moscow, 2006, 248 pp. (In Russian)
[2] M. Kh. Shkhanukov, “On some boundary value problems for a third-order equation arising when modelling fluid filtration in porous media”, Differentsial'nyye uravneniya, 18:4 (1982), 689–699 (In Russian) | Zbl
[3] A. A. Andreev, J. O. Yakovleva, “The characteristic problem for the system of the general hyperbolic differential equations of the third order with nonmultiple characteristics”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 1(30), 31–36 (In Russian) | DOI
[4] M. H. Beshtokov, “Riemann method for solving non-local boundary value problems for the third order pseudoparabolic equations”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 4(33), 15–24 (In Russian) | DOI | Zbl
[5] T. D. Dzhuraev, Yu. P. Apakov, “On the avtomodel solution of an equation of the third order with multiple characteristics”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2007, no. 2(15), 18–26 (In Russian) | DOI
[6] K. B. Sabitov, “A boundary value problem for a third-order equation of mixed type”, Dokl. Math., 80:1 (2009), 565–568 | DOI | Zbl
[7] K. B. Sabitov, “Dirichlet problem for a third-order equation of mixed type in a rectangular domain”, Differ. Equ., 47:5 (2011), 706–714 | DOI | Zbl
[8] K. B. Sabitov, G. Yu. Udalova, “Boundary value problem for mixed type equation of the third order with periodic conditions”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 3(32), 29–45 (In Russian) | DOI | Zbl
[9] O. A. Repin, S. K. Kumykova, “Problem with shift for the third-order equation with discontinuous coefficients”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 4(29), 17–25 (In Russian) | DOI
[10] A. Sopuev, N. K. Arkabaev, “Interface problems for linear pseudo-parabolic equations of the third order”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 1, 16–23 (In Russian) | MR
[11] D. Colton, “Pseudoparabolic equations in one space variable”, J. Differ. Equation, 12:3 (1972), 559–565 | DOI | MR | Zbl
[12] D. Colton, “Integral operators and the first initial boundary value problem for pseudoparabolic equations with analytic coefficients”, J. Differ. Equation, 13:3 (1973), 506–522 | DOI | MR | Zbl
[13] Ya. V. Bykov, O nekotorykh zadachakh teorii integro-differentsial'nykh uravneniy [On Some Problems in the Theory of Integro-differential Equations], Kirgiz State Univ., Frunze, 1957, 328 pp. (In Russian)
[14] M. Imanaliyev, Kolebaniya i ustoychivost' resheniy singulyarno-vozmushchennykh integro-differentsial'nykh sistem [Oscillations and Solutions Stability of Singular-perturbed Integro-differential Equations], Ilim, Frunze, 1974, 352 pp. (In Russian)
[15] A. M. Denisov, Vvedeniye teoriyu obratnykh zadach [Introduction to the theory of inverse problem], Moscow State Univ., Moscow, 1994, 285 pp. (In Russian)
[16] V. G. Romanov, Inverse Problems of Mathematical Physics, VNU Science Press, Utrecht, 1987, vii+224 pp.
[17] M. M. Lavrent'ev, L. Ya. Savel'ev, Linear operators and ill-posed problems, Consultants Bureau, New York, 1995, xiv+382 pp. | MR | Zbl
[18] T. K. Yuldashev, “Inverse problem for a nonlinear integro-differential equation of the third order”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2013, no. 9-1 (110), 58–66 (In Russian) | Zbl
[19] T. K. Yuldashev, “On solvability of mixed value problem for linear parabolo-hyperbolic Fredholm integro-differential equation”, Zhurnal SVMO, 15:3 (2013), 158–163 (In Russian) | Zbl
[20] T. K. Yuldashev, “Nonexplicit evolution Volterra integral equation of the first kind with nonlinear integral delay”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 2(19), 38–44 (In Russian) | DOI
[21] T. K. Yuldashev, “Inverse problem for nonlinear partial differential equation with high order pseudoparabolic operator”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 3(28), 17–29 (In Russian) | DOI | Zbl
[22] T. K. Yuldashev, A. I. Seredkina, “Inverse problem for quazilinear partial integro-differential equations of higher order”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 3(32), 46–55 (In Russian) | DOI | Zbl