Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_1_a4, author = {I. N. Rodionova and V. M. Dolgopolov}, title = {Problems with conjunction on a characteristic plane for the third-order hyperbolic equation in the three-dimensional space}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {48--55}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a4/} }
TY - JOUR AU - I. N. Rodionova AU - V. M. Dolgopolov TI - Problems with conjunction on a characteristic plane for the third-order hyperbolic equation in the three-dimensional space JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 48 EP - 55 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a4/ LA - ru ID - VSGTU_2014_1_a4 ER -
%0 Journal Article %A I. N. Rodionova %A V. M. Dolgopolov %T Problems with conjunction on a characteristic plane for the third-order hyperbolic equation in the three-dimensional space %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 48-55 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a4/ %G ru %F VSGTU_2014_1_a4
I. N. Rodionova; V. M. Dolgopolov. Problems with conjunction on a characteristic plane for the third-order hyperbolic equation in the three-dimensional space. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 48-55. http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a4/
[1] V. F. Volkodavov, E. I. Tomina, On the uniqueness of the solution for some boundary value problems of Lavrentiev–Bitsadze equation, Dep. VINITI. 9.03.1993. 547–B93, 1993 (In Russian)
[2] V. F. Volkodavov, S. G. Maklakov, “An inversion formula for a Volterra equation of the first kind and its application”, Russian Math. (Iz. VUZ), 40:9 (1996), 14–17 | MR | Zbl
[3] V. F. Volkodavov, V. N. Zakharov, “Extremal properties of solutions of a third-order equation of hyperbolic type in three-dimensional space and their application”, Russian Math. (Iz. VUZ), 43:4 (1999), 26–29 | MR | Zbl
[4] V. F. Volkodavov, E. R. Mansurova, “A boundary value problem for a particular form of the Euler–Darboux equation with integral conditions and special conjugation conditions on the characteristic”, Russian Math. (Iz. VUZ), 44:8 (2000), 14–17 | MR | Zbl
[5] V. F. Volkodavov, Yu. A. Il'yushina, “The solution of the problem $T$ with conjugation of the normal derivative with the fractional derivative is unique for an equation of mixed type”, Russian Math. (Iz. VUZ), 47:9 (2003), 4–7 | MR | Zbl
[6] E. R. Mansurova, “An analogue of the Tricomi problem with a nonlocal integral conjugation condition”, Russian Math. (Iz. VUZ), 53:4 (2009), 49–53 | DOI | MR | Zbl
[7] E. R. Mansurova, “On the unique solvability of an analogue of the Tricomi problem with a nonlocal integral conjugation condition”, Math. Notes, 87:6 (2010), 844–853 | DOI | DOI | MR | Zbl
[8] I. N. Rodionova, “The problem with integral condition for one space analog of hyperbolic type equation degenerated on a coordinate planes”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 2(23), 189–193 (In Russian) | DOI
[9] M. V. Dolgopolov, I. N. Rodionova, “Problems for equations of hyperbolic type in the plane or three-dimensional space with conjugation conditions on a characteristic”, Izv. Math., 75:4 (2011), 681–689 | DOI | DOI | MR | Zbl
[10] V. M. Dolgopolov, I. N. Rodionova, “Two problems for three-dimensional space analogue of the third order hyperbolic type equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 4(29), 212–217 (In Russian) | DOI
[11] S. G. Mikhlin, Integral Equations, OGIZ, Moscow, Leningrad, 1947 (In Russian)