Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_1_a2, author = {N. S. Imanbaev}, title = {Eigenvalue {Problem} for {Differential} {Cauchy--Riemann} {Operator} with {Nonlocal} {Boundary} {Conditions}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {25--36}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a2/} }
TY - JOUR AU - N. S. Imanbaev TI - Eigenvalue Problem for Differential Cauchy--Riemann Operator with Nonlocal Boundary Conditions JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 25 EP - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a2/ LA - ru ID - VSGTU_2014_1_a2 ER -
%0 Journal Article %A N. S. Imanbaev %T Eigenvalue Problem for Differential Cauchy--Riemann Operator with Nonlocal Boundary Conditions %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 25-36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a2/ %G ru %F VSGTU_2014_1_a2
N. S. Imanbaev. Eigenvalue Problem for Differential Cauchy--Riemann Operator with Nonlocal Boundary Conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 25-36. http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a2/
[1] V. A. Steklov, Osnovnye zadachi matematicheskoj fiziki [Basic problems of mathematical physics], v. I, II, Petrogradskiy un-t, Petrograd, 1922 (In Russian) | Zbl
[2] F. I. Frankl', “Subsonic flow past a profile with local supersonic zone bounded by a curved shock wave”, Prikl. Matem. i Mekhanika, 20:2 (1956), 196–202 (In Russian) | Zbl
[3] A. M. Nakhushev, “A new boundary value problem for a degenerate hyperbolic equation”, Sov. Math., Dokl., 10:4 (1969), 935–938 | Zbl
[4] A. V. Bitsadze, A. A. Samarskii, “On some simple generalizations of linear elliptic boundary problems”, Sov. Math., Dokl., 10:4 (1969), 398–400 | Zbl
[5] A. M. Nakhushev, Zadachi so smeshcheniyem dlya uravnenii v chastnykh proizvodnykh [Problems with shifts for partial differential equations], Nauka, Moscow, 2006, 287 pp. (In Russian) | Zbl
[6] E. Yu. Arlanova, “The problem with shift for the Bitsadze–Lykov equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 4(29), 26–36 (In Russian) | DOI
[7] A. M. Nakhushev, “On the present state of boundary value problems with a shift for the main types of partial differential equations”, Trudy Tret'yey Vserossiyskoy nauchnoy konferentsii [Proceedings of the Third All-Russian Scientific Conference] (29–31 May 2006). Part 3, Matem. Mod. Kraev. Zadachi, Samara State Technical Univ., Samara, 2006, 170–173 (In Russian)
[8] D. E. Kasymova, A. B. Tungatarov, “On one boundary value problem with shift for Carleman–Vekua equation with a singular point”, Obobshchennyye analiticheskiye funktsii i ikh prilozheniya [Generalized analytic functions and their applications], Karaganda State Univ., Karaganda, 1997, 48–53 (In Russian)
[9] M. Otelbaev, A. N. Shynybekov, “On well-posed problems of Bicadze–Samarskii type”, Soviet Math. Dokl., 26:4 (1982), 157–161 | MR | Zbl
[10] Ying Wang, Yufeng Wang, “Two Boundary-Value Problems for the Cauchy–Riemann Equation in a Sector”, Complex Analysis and Operator Theory, 6:6 (2012), 1121–1138 | DOI | MR | Zbl
[11] A. Y. Timofeev, “Boundary problem for the generalized Cauchy–Riemann equation in spaces, described by the modulus of continuity”, Ufimsk. Mat. Zh., 4:1 (2012), 146–152 (In Russian)
[12] A. S. Il'chukov, “On behaviour of solution of boundary value problem for generalized Cauchy–Riemann equation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 2, 27–34 (In Russian) | Zbl
[13] K. N. Ospanov, M. Otelbaev, “Boundary value problems for the generalized Cauchy-Riemann system with nonsmooth coefficients”, Soviet Math. Dokl., 32:1 (1985), 40–42 | MR | Zbl
[14] K. N. Ospanov, M. Otelbaev, “A generalized Cauchy–Riemann system with nonsmooth coefficients”, Soviet Math. (Iz. VUZ), 33:3 (1989), 75–89 | MR | Zbl | Zbl
[15] V. A. Mikhailets, Spektral'nyye zadachi s obshchimi krayevymi usloviyami [Spectral problems with general boundary conditions], Dissert. Doct. Phys. Math. Sci. , Kiev, 1989 (In Russian)
[16] D. K. Potapov, “Estimates of the DifferentialOperator in Problems with a Spectral Parameter for Elliptic-Type Equations with Discontinuous Nonlinearities”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 5(21), 268–271 (In Russian) | DOI
[17] N. S. Imanbaev, B. E Kanguzhin, Zh. Kirgizbaev, “On the Fredholm property of one spectral problem related to Cauchy-Riemann operator”, Voprosy ustoychivosti, prochnosti i upravlyayemosti dinamicheskikh sistem [Questions of Stability, Durability and Controllability of the Dynamic System], Russian State Open Technical Univ. of Railway Transport, Moscow, 2002, 54–59 (In Russian)
[18] F. Riesz, B. Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955, xii+468 pp. | MR
[19] I. I. Kal'mushevskiy, “On solutions of some integral equations with kernels depending on the difference and the sum of the arguments”, Differents. Uravneniya, 16:5 (1980), 941–943 (In Russian) | MR | Zbl
[20] L. A. Sakhnovich, “Similarity of operators”, Siberian Math. J., 13:4 (1972), 604–615 | DOI | MR
[21] I. A. Akbergenov, “On approximate solution of the Fredholm integral equation and its eigenvalues”, Mat. sb., 42:6 (1935), 679–698 (In Russian) | Zbl