Asymptotic Analysis of Solutions of a Nonlinear Problem of Unsteady Heat Conduction of Layered Anisotropic
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 168-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

The heat conduction problem is formulated for the layered shells consisting of heat-sensitive anisotropic inhomogeneous layers, with boundary conditions of general form. The heat sensitivity of the material layers is described by the linear dependence of their thermophysical characteristics on temperature. The equation of heat conduction, boundary conditions and conditions of thermal conjugations on the boundaries of the contact between the layers are written in the dimensionless form. Two small parameters in dimensionless ratios are defined: thermophysical parameter characterizing the degree of thermal sensitivity of the material layers and geometrical parameter characterizing the relative shell thickness. Sequential recursion of dimensionless ratios is carry out, first on thermophysical small parameter, and then on the geometrical parameter. The first type of recursion allowed to linearize the problem of heat conduction. On the basis of the second type of recursion the exterior asymptotic expansion of the solution is built for the problem of nonstationary heat conduction of layered anisotropic heterogeneous shells with boundary conditions of the first kind on the facial surfaces. The obtained two-dimensional governing equation is analyzed. The asymptotic properties of solutions of the problem of heat conductivity are investigated.
Keywords: thermal conductivity, thermal sensitivity, asymptotic analysis, sandwich shells, anisotropy and heterogeneity.
@article{VSGTU_2014_1_a14,
     author = {A. P. Yankovskii},
     title = {Asymptotic {Analysis} of {Solutions} of a {Nonlinear} {Problem} of {Unsteady} {Heat} {Conduction} of {Layered} {Anisotropic}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {168--185},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a14/}
}
TY  - JOUR
AU  - A. P. Yankovskii
TI  - Asymptotic Analysis of Solutions of a Nonlinear Problem of Unsteady Heat Conduction of Layered Anisotropic
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 168
EP  - 185
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a14/
LA  - ru
ID  - VSGTU_2014_1_a14
ER  - 
%0 Journal Article
%A A. P. Yankovskii
%T Asymptotic Analysis of Solutions of a Nonlinear Problem of Unsteady Heat Conduction of Layered Anisotropic
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 168-185
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a14/
%G ru
%F VSGTU_2014_1_a14
A. P. Yankovskii. Asymptotic Analysis of Solutions of a Nonlinear Problem of Unsteady Heat Conduction of Layered Anisotropic. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 168-185. http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a14/

[1] Yu. M. Tarnopol'skiy, I. G. Zhigun, V. A. Polyakov, Prostranstvenno-armirovannye kompozitsionnye materialy [Space-reinforced composite materials], Mashinostroenie, Moscow, 1987, 224 pp. (In Russian)

[2] Yu. M. Tarnopol'skii, A. V. Roze, I. G. Zhigun, G. M. Gunyaev, “Structural characteristics of materials reinforced with high-modulus fibers”, Polymer Mechanics, 7:4 (1971), 600–609 | DOI

[3] D. V. Dedkov, A. A. Tashkinov, “Stress concentration coefficients of a woven textile composite layer with local processing defects under pure forming conditions”, Computational Continuum Mechanics, 2013, no. 6, 103–109 (In Russian) | DOI

[4] M. H. Mohamed, A. E. Bogdanovich, L. C. Dickinson, J. N. Singletary, R. R. Lienhart, “A new generation of 3D woven fabric performs and composites”, SAMPE Journal, 37:3 (2001), 3–17

[5] Yu. V. Nemirovsky, N. A. Feodorova, “Study of curvilinear reinforcement rational structures in polar coordinate system”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 1(30), 233–244 (In Russian) | DOI

[6] J. Schuster, D. Heider, K. Sharp, M. Glowania, “Measuring and modeling the thermal conductivities of three-dimensionally woven fabric composites”, Mechanics of Composite Materials, 45:2 (2009), 165–174 | DOI

[7] E. M. Kartashov, V. A. Kudinov, Analiticheskaya teoriya teploprovodnosti i prikladnoy termouprugosti [Analytical Theory of Heat Conduction and Thermoelasticity], Librokom, Moscow, 2012, 656 pp. (In Russian)

[8] V. V. Bolotin, Yu. N. Novichkov, Mekhanika mnogosloynykh konstruktsiy [Mechanics of Multilayer Structures], Mashinostroenie, Moscow, 1980, 375 pp. (In Russian)

[9] O. V. Bitkina, “Investigation methods of the influence of technological errors on stress-strain state of multilayered composite panels”, Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 14:4(2) (2012), 569–576 (In Russian)

[10] O. V. Bitkina, “Experimental investigation of the influence of technological factors on the forming of multilayered panels made of composite materials”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Tekhnicheskie Nauki, 2013, no. 1(37), 99–110 (In Russian)

[11] A. P. Yankovskii, “Asymptotic Analysis of Solution of a Nonlinear Problem of Nonstationary Heat Conduction of Lamellar Anisotropic Inhomogeneous Shells with Mixed Boundary Conditions on Faces”, J. Eng. Phys. Thermophys., 86:6 (2013), 1344–1354 | DOI

[12] N. M. Belyaev, A. A. Ryadno, Metody teorii teploprovodnosti [Methods of Heat Conduction Theory], v. 1, Vysshaya shkola, Moscow, 1982, 327 pp. (In Russian)

[13] V. A. Kudinov, I. V. Kudinov, Metody resheniya parabolicheskikh i giperbolicheskikh uravneniy teploprovodnosti [Methods for Solving Parabolic and Hyperbolic Heat Conduction Equations], ed. E. M. Kartashov, Librokom, Moscow, 2012, 280 pp. (In Russian)

[14] B. E. Neimark, Fizicheskie svoystva staley i splavov, primenyaemykh v energetike [Physical properties of steels and alloys in the energy sector], Energiya, Moscow, Leningrad, 1967, 238 pp. (In Russian)

[15] V. N. Lukanin, M. G. Shatrov, G. M. Kamfer, S. G. Nechaev, I. E. Ivanov, L. M. Matyukhin, K. A. Morozov, Teplotekhnika [Heat Engineering], ed. V. N. Lukanin, Vysshaya shkola, Moscow, 2003, 671 pp. (In Russian)

[16] E. I. Zino, E. A. Tropp, Asimptoticheskie metody v zadachakh teorii teploprovodnosti i termouprugosti [Asymptotic Methods in Problems of Heat Conduction and Thermoelasticity Theory], Leningrad State Univ. Publ., Leningrad, 1978, 224 pp. (In Russian)

[17] A. M. Ilin, Matching of asymptotic expansions of solutions of boundary value problems, Translations of Mathematical Monographs, 102, American Mathematical Society, Providence, RI, 1992, ix+279 pp. | Zbl

[18] N. M. Belyaev, A. A. Ryadno, Metody teorii teploprovodnosti [Methods of Heat Conduction Theory], v. 2, Vysshaya shkola, Moscow, 1982, 304 pp. (In Russian)

[19] Yu. N. Rabotnov, Polzuchest' elementov konstruktsiy [Creep of Structural Elements], Fizmatgiz, Moscow, 1966, 752 pp. (In Russian)

[20] A. K. Malmeyster, V. P. Tamuzh, G. A. Teters, Soprotivlenie polimernykh i kompozitnykh materialov [Resistance of Polymer and Composite Matertals], Zinatne, Riga, 1980, 571 pp. (In Russian)

[21] V. V. Karpov, Prochnost' i ustoychivost' podkreplennykh obolochek vrashcheniya [Strength and stability reinforced shells of revolution], v. 1, Modeli i algoritmy issledovaniya prochnosti i ustoychivosti podkreplennykh obolochek vrashcheniya [Models and algorithms of strength and stability of the reinforced shells of revolution], Fizmatlit, Moscow, 2010, 288 pp. (In Russian)

[22] V. V. Karpov, A. A. Semenov, “Mathematical model of deformation of orthotropic reinforced shells of revolution”, Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering], 2013, no. 5(40), 100–106 (In Russian) | DOI