On the accuracy of difference scheme for Navier--Stokes equations
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 156-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents a study of difference schemes in time, which accuracy can be arbitrarily high. We present difference schemes in time for solving the Navier–Stokes equations, where series expansions are used to find the singularities of solutions of the Euler equations. These methods are generalized in this article for the arbitrary order schemes and for solving the Burgers equation and the Navier–Stokes equations for an incompressible fluid. The impact of the scheme on the calculation accuracy is examined. First, the method is applied to the test case associated with the Burgers equation, and then the problem of three-dimensional incompressible flow finding by solving the Navier–Stokes equations is considered. It is shown that the finite-difference scheme used to calculate the time derivatives is the main source of deviations of the approximate solution from the exact solution.
Keywords: Navier–Stokes equations, Burgers equation, difference scheme, approximation, stability, accuracy.
@article{VSGTU_2014_1_a13,
     author = {N. I. Sidnyaev and N. M. Gordeeva},
     title = {On the accuracy of difference scheme for {Navier--Stokes} equations},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {156--167},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a13/}
}
TY  - JOUR
AU  - N. I. Sidnyaev
AU  - N. M. Gordeeva
TI  - On the accuracy of difference scheme for Navier--Stokes equations
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 156
EP  - 167
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a13/
LA  - ru
ID  - VSGTU_2014_1_a13
ER  - 
%0 Journal Article
%A N. I. Sidnyaev
%A N. M. Gordeeva
%T On the accuracy of difference scheme for Navier--Stokes equations
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 156-167
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a13/
%G ru
%F VSGTU_2014_1_a13
N. I. Sidnyaev; N. M. Gordeeva. On the accuracy of difference scheme for Navier--Stokes equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 156-167. http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a13/

[1] L. G. Loitsyansky, Fluid and Gas Mechanics, Nauka, Moscow, 1970, 904 pp. (In Russian) | MR

[2] V. Ya. Neiland, V. V. Bogolepov, G. N. Dudin, I. I. Lipatov, Asymptotic Theory of Supersonic Viscous Gas Flows, Elsiever, Oxford, The Netherlands, 2008, xxv+536 pp.

[3] V. V. Bogolepov, “Small perturbations of a laminar boundary layer”, J. Appl. Mech. Tech. Phys., 28:5 (1987), 706–716 | DOI

[4] V. A. Bashkin, G. N. Dudin, 3-Dimensional Hypersonic Viscous Flow, Fizmatlit, Moscow, 2000, 288 pp. (In Russian)

[5] J. Gazdag, “Numerical convective schemes based on accurate computation of space derivatives”, J. Comput. Phys., 13:1 (1973), 100–113 | DOI | Zbl

[6] J. Gazdag, “Time-differencing schemes and transform methods”, J. Comput. Phys., 20:2 (1976), 196–207 | DOI | MR | Zbl

[7] N. I. Sidnyaev, “Calculation method of unstable external flow past rotation body with surface injection in three dimensional parabolized Navier–Stokes code”, Matem. Mod., 16:5 (2004), 55–65 (In Russian)

[8] N. I. Sidnyaev, D. A. Sirotovskiy, “On the accuracy of difference schemes for Burgers and Navier–Stokes equations”, Neobratimyye protsessy v prirode i tekhnike [Irreversible Processes in Nature and Technology. 3rd All-Russ. Conf. Abstr.], Bauman MSTU Publ., Moscow, 2005, 132–133 pp. (In Russian)

[9] Y. Morchoisne, “Résolution des équations de Navier-Stokes par une méthode pseudo-spectrale en espace-temps”, Rech. Aérosp., 5 (1979), 293–306 (In French) | MR | Zbl

[10] Ph. Roy, “Résolution des équations de Navier–Stokes par un schema de haute précision en espace et en temps”, Rech. Aérosp., 6 (1980), 373–385 (In French) | MR | Zbl

[11] Ya. I. Belopolskaya, “Generalized Solutions of Nonlinear Parabolic Systems and the Vanishing Viscosity Method”, J. Math. Sci. (N. Y.), 133:3 (2006), 1207–1223 | DOI | MR | Zbl

[12] L. Bertini, N. Cancrini, G. Jona-Lasinio, “The stochastic Burgers Equation”, Comm. Math. Phys., 165:2 (1994), 211–232 | DOI | MR | Zbl

[13] I. M. Davies, A. Truman, H. Zhao, “Stochastic heat and Burgers equations and their singularities. I. Geometrical properties”, J. Math. Phys., 43:6 (2002), 3293–3328 | DOI | MR | Zbl

[14] O. O. Obrezkov, “The Proof of the Feynman–Kac Formula for Heat Equation on a Compact Riemannian Manifold”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 6:2 (2003), 311–320 | DOI | MR | Zbl

[15] O. G. Smolyanov, H. von Weizsäcker, “Smooth probability measures and associated differential operators”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 2:1 (1999), 51–78 | DOI | MR | Zbl

[16] O. G. Smolyanov, H. von Weizsäcker, O. Wittich, “Brownian motion on a manifold as a limit of stepwise conditioned standard Brownian motions”, Canadian Mathematical Society, Conference Proceedings, v. 29, ed. J. Jost, 2000, 589–602 | MR | Zbl

[17] O. G. Smolyanov, H. von Weizsäcker, O. Wittich, “Surface Measures and Initial Boundary Value Problems Generated by Diffusions with Drift”, Doklady Mathematics, 76:1 (2007), 606–610 | DOI | MR | Zbl

[18] A. Truman, H. Z. Zhao, “On stochastic diffusion equations and stochastic Burgers' equations”, J. Math. Phys., 37:1 (1996), 283–307 | DOI | MR | Zbl

[19] H. J. Wospakrik, F. P. Zen, Inhomogeneous Burgers Equation and the Feynman-Kac Path Integral, 1998, 12 pp., arXiv: solv-int/9812014

[20] S. E. Matskevich, “Burgers equation and Kolmogorov–Petrovsky–Piskunov equation on manifolds”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 14:2 (2011), 199–208 | DOI | MR | Zbl