Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_1_a13, author = {N. I. Sidnyaev and N. M. Gordeeva}, title = {On the accuracy of difference scheme for {Navier--Stokes} equations}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {156--167}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a13/} }
TY - JOUR AU - N. I. Sidnyaev AU - N. M. Gordeeva TI - On the accuracy of difference scheme for Navier--Stokes equations JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 156 EP - 167 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a13/ LA - ru ID - VSGTU_2014_1_a13 ER -
%0 Journal Article %A N. I. Sidnyaev %A N. M. Gordeeva %T On the accuracy of difference scheme for Navier--Stokes equations %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 156-167 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a13/ %G ru %F VSGTU_2014_1_a13
N. I. Sidnyaev; N. M. Gordeeva. On the accuracy of difference scheme for Navier--Stokes equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 156-167. http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a13/
[1] L. G. Loitsyansky, Fluid and Gas Mechanics, Nauka, Moscow, 1970, 904 pp. (In Russian) | MR
[2] V. Ya. Neiland, V. V. Bogolepov, G. N. Dudin, I. I. Lipatov, Asymptotic Theory of Supersonic Viscous Gas Flows, Elsiever, Oxford, The Netherlands, 2008, xxv+536 pp.
[3] V. V. Bogolepov, “Small perturbations of a laminar boundary layer”, J. Appl. Mech. Tech. Phys., 28:5 (1987), 706–716 | DOI
[4] V. A. Bashkin, G. N. Dudin, 3-Dimensional Hypersonic Viscous Flow, Fizmatlit, Moscow, 2000, 288 pp. (In Russian)
[5] J. Gazdag, “Numerical convective schemes based on accurate computation of space derivatives”, J. Comput. Phys., 13:1 (1973), 100–113 | DOI | Zbl
[6] J. Gazdag, “Time-differencing schemes and transform methods”, J. Comput. Phys., 20:2 (1976), 196–207 | DOI | MR | Zbl
[7] N. I. Sidnyaev, “Calculation method of unstable external flow past rotation body with surface injection in three dimensional parabolized Navier–Stokes code”, Matem. Mod., 16:5 (2004), 55–65 (In Russian)
[8] N. I. Sidnyaev, D. A. Sirotovskiy, “On the accuracy of difference schemes for Burgers and Navier–Stokes equations”, Neobratimyye protsessy v prirode i tekhnike [Irreversible Processes in Nature and Technology. 3rd All-Russ. Conf. Abstr.], Bauman MSTU Publ., Moscow, 2005, 132–133 pp. (In Russian)
[9] Y. Morchoisne, “Résolution des équations de Navier-Stokes par une méthode pseudo-spectrale en espace-temps”, Rech. Aérosp., 5 (1979), 293–306 (In French) | MR | Zbl
[10] Ph. Roy, “Résolution des équations de Navier–Stokes par un schema de haute précision en espace et en temps”, Rech. Aérosp., 6 (1980), 373–385 (In French) | MR | Zbl
[11] Ya. I. Belopolskaya, “Generalized Solutions of Nonlinear Parabolic Systems and the Vanishing Viscosity Method”, J. Math. Sci. (N. Y.), 133:3 (2006), 1207–1223 | DOI | MR | Zbl
[12] L. Bertini, N. Cancrini, G. Jona-Lasinio, “The stochastic Burgers Equation”, Comm. Math. Phys., 165:2 (1994), 211–232 | DOI | MR | Zbl
[13] I. M. Davies, A. Truman, H. Zhao, “Stochastic heat and Burgers equations and their singularities. I. Geometrical properties”, J. Math. Phys., 43:6 (2002), 3293–3328 | DOI | MR | Zbl
[14] O. O. Obrezkov, “The Proof of the Feynman–Kac Formula for Heat Equation on a Compact Riemannian Manifold”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 6:2 (2003), 311–320 | DOI | MR | Zbl
[15] O. G. Smolyanov, H. von Weizsäcker, “Smooth probability measures and associated differential operators”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 2:1 (1999), 51–78 | DOI | MR | Zbl
[16] O. G. Smolyanov, H. von Weizsäcker, O. Wittich, “Brownian motion on a manifold as a limit of stepwise conditioned standard Brownian motions”, Canadian Mathematical Society, Conference Proceedings, v. 29, ed. J. Jost, 2000, 589–602 | MR | Zbl
[17] O. G. Smolyanov, H. von Weizsäcker, O. Wittich, “Surface Measures and Initial Boundary Value Problems Generated by Diffusions with Drift”, Doklady Mathematics, 76:1 (2007), 606–610 | DOI | MR | Zbl
[18] A. Truman, H. Z. Zhao, “On stochastic diffusion equations and stochastic Burgers' equations”, J. Math. Phys., 37:1 (1996), 283–307 | DOI | MR | Zbl
[19] H. J. Wospakrik, F. P. Zen, Inhomogeneous Burgers Equation and the Feynman-Kac Path Integral, 1998, 12 pp., arXiv: solv-int/9812014
[20] S. E. Matskevich, “Burgers equation and Kolmogorov–Petrovsky–Piskunov equation on manifolds”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 14:2 (2011), 199–208 | DOI | MR | Zbl