Development of Identification Methods for~Fractional Differential Equations with Riemann--Liouville Fractional Derivative
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 134-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

The methods for parametric identification of fractional differential operators with $\alpha \in (1, 2)$ degree according to instantaneous values of experimental observations based on the Barrett differential equation example are suggested. The methods are based on construction of the linear parametrical discrete model for fractional differential equation. The coefficients of the model are associated with the required parameters of differentiation equation of fractional order. Different approaches to the determination of the relationships between the parameters of the differential equation and the discrete model coefficients are considered. Connection expressions for coefficients of linear parametrical discrete model and Cauchy type problem parameters to be identified are obtained. The algorithm of the method which let us reduce the problem to computation of mean-square estimates for coefficients of linear parametrical discrete model is described. Numerical investigations have been done; furthermore, their results let us conclude high efficiency of the methods.
Keywords: fractional differential operators, parametric identification, linear parametrical discrete model, difference equation.
@article{VSGTU_2014_1_a11,
     author = {A. S. Ovsienko},
     title = {Development of {Identification} {Methods} {for~Fractional} {Differential} {Equations} with {Riemann--Liouville} {Fractional} {Derivative}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {134--144},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a11/}
}
TY  - JOUR
AU  - A. S. Ovsienko
TI  - Development of Identification Methods for~Fractional Differential Equations with Riemann--Liouville Fractional Derivative
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 134
EP  - 144
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a11/
LA  - ru
ID  - VSGTU_2014_1_a11
ER  - 
%0 Journal Article
%A A. S. Ovsienko
%T Development of Identification Methods for~Fractional Differential Equations with Riemann--Liouville Fractional Derivative
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 134-144
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a11/
%G ru
%F VSGTU_2014_1_a11
A. S. Ovsienko. Development of Identification Methods for~Fractional Differential Equations with Riemann--Liouville Fractional Derivative. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 134-144. http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a11/

[1] K. B. Oldham, J. Spanier, The fractional calculus. Theory and applications of differentiation and integration to arbitrary order, Mathematics in Science and Engineering, 111, Academic Press, New York, London, 1974, xiii+234 pp. | MR | Zbl

[2] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Jon Wiley Sons. Inc., New York, 1993, xiii+366 pp. | MR | Zbl

[3] A. M. Nakhushev, Uravneniya matematicheskoy biologii [Equations of mathematical biology], Vysshaya Shkola, Moscow, 1995, 301 pp. (In Russian) | Zbl

[4] R. Gorenflo, F. Mainardi, “Fractional calculus, integral and differential equations of fractional order”, Fractals and Fractional Calculus in Continuum Mechanics, Courses and Lecture Notes, 378, Springer Verlag, Wien, New York, 1997, 223–276, arXiv: [math-ph] 0805.3823 | DOI | MR

[5] I. Podlubny, Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999, xxiv+340 pp. | MR | Zbl

[6] V. V. Uchaikin, Metod drobnykh proizvodnykh [The method of fractional derivatives], Artichoke Publ., Ulyanovsk, 2008, 512 pp.

[7] A. M. Nakhushev, Elementy drobnogo ischisleniya i ikh primenenie [Elements of Fractional Calculus and Their Application], Kabardino-Balkarsk. Nauchn. Tsentr Ross. Akad. Nauk, Nalchik, 2003, 299 pp. (In Russian)

[8] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie [Fractional calculus and its applications], Fizmatlit, Moscow, 2003, 271 pp. (In Russian) | Zbl

[9] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 204, xv+523 pp. | MR | Zbl

[10] V. V. Vasilyev, L. O. Simak, Drobnoe ischislenie i approksimatsionnye metody v modelirovanii dinamicheskikh sistem [Fractional calculus and approximation methods for modeling of dynamic systems], NAN Ukraine, Kiev, 2008, 256 pp. (In Russian)

[11] S. Das, Functional Fractional Calculus, Springer-Verlag, Berlin, Heidelberg, 2011, ix+612 pp. | DOI | MR | Zbl

[12] A. S. Ovsienko, “Development of parameter identification method for fractional differential operator”, Proceedings of the Eighth All-Russian Scientific Conference with international participation. Part 2, Matem. Mod. Kraev. Zadachi, Samara State Technical Univ., Samara, 2011, 195–201 (In Russian)

[13] A. S. Ovsienko, “Parametric identification of Cauchy problem for one fractional differential equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 1(26), 157–165 (In Russian) | DOI

[14] J. H. Barrett, “Differential equations of non-integer order”, Canad. J. Math., 6:4 (1954), 529–541 | DOI | MR | Zbl

[15] E. N. Ogorodnikov, V. P. Radchenko, N. S. Yashagin, “Rheological model of viscoelastic body with memory and differential equations of fractional oscillator”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 1(22), 255–268 (In Russian) | DOI

[16] E. N. Ogorodnikov, “Some Aspects of Initial Value Problems Theory for Differential Equations with Riemann–Liouville Derivatives”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 5(21), 10–23 (In Russian) | DOI

[17] M. M. Dzrbasjan, Integralnye preobrazovaniya i predstavleniya funktsiy v kompleksnoy oblasti [Integral Transforms and Representations of Functions in Complex Domain], Nauka, Moscow, 1966, 672 pp. (In Russian) | MR

[18] V. E. Zoteev, Parametricheskaya identifikatsiya dissipativnykh mekhanicheskikh sistem na osnove raznostnykh uravneniy [Parametric identification of dissipative mechanical systems on the basis of difference equations], ed. V. P. Radchenko, Mashinostroenie-1, Moscow, 2009, 344 pp. (In Russian)

[19] A. S. Ovsienko, “Parameter identification of anomalous diffusion process on the basis of difference equation”, Vychislitelnye tekhnologii, 18:1 (2013), 65–73 (In Russian)

[20] N. N. Kalitkin, Chislennye metody [Numerical Methods], Nauka, Moscow, 1978, 512 pp. (In Russian) | MR