Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2014_1_a10, author = {V. D. Beybalaev and A. Z. Yakubov}, title = {Analysis of the {Difference} {Scheme} of {Wave} {Equation} {Equivalent} with {Fractional} {Differentiation} {Operator}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {125--133}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a10/} }
TY - JOUR AU - V. D. Beybalaev AU - A. Z. Yakubov TI - Analysis of the Difference Scheme of Wave Equation Equivalent with Fractional Differentiation Operator JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 125 EP - 133 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a10/ LA - ru ID - VSGTU_2014_1_a10 ER -
%0 Journal Article %A V. D. Beybalaev %A A. Z. Yakubov %T Analysis of the Difference Scheme of Wave Equation Equivalent with Fractional Differentiation Operator %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 125-133 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a10/ %G ru %F VSGTU_2014_1_a10
V. D. Beybalaev; A. Z. Yakubov. Analysis of the Difference Scheme of Wave Equation Equivalent with Fractional Differentiation Operator. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 125-133. http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a10/
[1] Yu. I. Babenko, Metod drobnogo differentsirovaniya v prikladnykh zadachakh teorii teplomassoobmena [Method of Fractional Differentiation in Applied Problems of the Theory of Heat and Mass Transfer], Professional, St. Petersburg, 2009, 584 pp. (In Russian)
[2] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Jon Wiley Sons. Inc., New York, 1993, xiii+366 pp. | MR | Zbl
[3] I. Podlubny, Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999, xxiv+340 pp. | MR | Zbl
[4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 204, xv+523 pp. | MR | Zbl
[5] V. V. Vasilyev, L. O. Simak, Drobnoe ischislenie i approksimatsionnye metody v modelirovanii dinamicheskikh sistem [Fractional calculus and approximation methods for modeling of dynamic systems], NAN Ukraine, Kiev, 2008, 256 pp. (In Russian)
[6] S. Das, Functional Fractional Calculus, Springer-Verlag, Berlin, Heidelberg, 2011, ix+612 pp. | DOI | MR | Zbl
[7] V. V. Uchaikin, Metod drobnykh proizvodnykh [The method of fractional derivatives], Artichoke Publ., Ulyanovsk, 2008, 512 pp. (In Russian)
[8] A. M. Nakhushev, Uravneniya matematicheskoy biologii [Equations of mathematical biology], Vysshaya Shkola, Moscow, 1995, 301 pp. (In Russian) | Zbl
[9] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie [Fractional calculus and its applications], Fizmatlit, Moscow, 2003, 271 pp. (In Russian) | Zbl
[10] A. M. Nakhushev, Elementy drobnogo ischisleniya i ikh primenenie [Elements of Fractional Calculus and Their Application], Kabardino-Balkarsk. Nauchn. Tsentr Ross. Akad. Nauk, Nalchik, 2003, 299 pp. (In Russian)
[11] V. D. Beybalaev, “One-step methods on the solution of the Cauchy problem for ordinary differential equations with fractional order derivatives”, Vestnik Dagestanskogo gosudarstvennogo universiteta, 2011, no. 6, 67–72 (In Russian)
[12] U. G. Pirumov, Chislennye metody [Numerical methods], Drofa, Moscow, 2004, 224 pp. (In Russian)
[13] R. R. Nigmatullin, “Fractional integral and its physical interpretation”, Theoret. and Math. Phys., 90:3 (1992), 242–251 | DOI | MR | Zbl