Generalized Integral Laplace Transform and Its Application to Solving Some Integral Equations
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 19-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present integral transforms $\widetilde {\mathcal L}\left\{f(t);x\right\}$ and $\widetilde {\mathcal L}_{\gamma_1,\gamma_2,\gamma} \left\{f(t);x\right\}$, generalizing the classical Laplace transform. The $(\tau, \beta)$- generalized confluent hypergeometric functions are the kernels of these integral transforms. At certain values of the parameters these transforms coincides with the famous classical Laplace transform. The inverse formula for the transforms is given. The convolution theorem for transform $\widetilde {\mathcal L}\left\{f(t);x\right\}$ is proven. Volterra integral equations of the first kind with core containing the generalized confluent hypergeometric function ${\mathstrut}_1\Phi{\mathstrut}_1^{\tau,\beta}(a;c;z)$ are considered. The above equation is solved by the method of integral transforms. The treatment of integral transforms is applied to get the desired solution of the integral equation. The solution is obtained in explicit form.
Keywords: Laplace integral transform, integral equations, generalized hypergeometric function.
@article{VSGTU_2014_1_a1,
     author = {S. M. Zaikina},
     title = {Generalized {Integral} {Laplace} {Transform}  and {Its} {Application} to {Solving} {Some} {Integral} {Equations}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {19--24},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a1/}
}
TY  - JOUR
AU  - S. M. Zaikina
TI  - Generalized Integral Laplace Transform  and Its Application to Solving Some Integral Equations
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 19
EP  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a1/
LA  - ru
ID  - VSGTU_2014_1_a1
ER  - 
%0 Journal Article
%A S. M. Zaikina
%T Generalized Integral Laplace Transform  and Its Application to Solving Some Integral Equations
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 19-24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a1/
%G ru
%F VSGTU_2014_1_a1
S. M. Zaikina. Generalized Integral Laplace Transform  and Its Application to Solving Some Integral Equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2014), pp. 19-24. http://geodesic.mathdoc.fr/item/VSGTU_2014_1_a1/

[1] A. Erdélyi, Tables of Integral Transforms (Bateman Manuscript Project), McGraw-Hill, New York, 1954 (vol. 1, Moscow, Nauka, 1969; vol. 2, Moscow, Nauka, 1970 [Russian translation]) | Zbl

[2] V. A. Ditkin, A. P. Prudnikov, Integral transforms and operational calculus, International series of monographs in pure and applied mathematics, 78, Pergamon Press, Oxford, New York, 1965, xi+529 pp. | MR | MR | Zbl

[3] A. A. Kilbas, M. Saigo, H-Transforms: Theory and Applications, Series on Analytic Methods and Special Functions, 9, CRC Press, Boca Raton, 2004, xii+389 pp. | DOI | MR | Zbl

[4] The use of integral transforms, McGraw-Hill Book Comp., New York etc., 1972, xii+539 pp. | Zbl

[5] N. O. Virchenko, Parni ($N$-arni) integral'ni rivnyannya [Pairs ($N$-ary) integral equations], Zadruga, Kiev, 2009, 476 pp. (In Ukrainian)

[6] N. Virchenko, “On the generalized confluent hypergeometric function and its applications”, Fract. Calc. Appl. Anal., 9:2 (2006), 101–108 | MR | Zbl

[7] E. M. Wright, “The Asymptotic Expansion of the Generalized Hypergeometric Function”, J. London Math. Soc., s1-10:4 (1935), 286–293 | DOI | MR | Zbl

[8] O. A. Repin, S. M. Zaikina, “Some new generalized integral transformations and their application in differential equations theory”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 2(23), 8–16 (In Russian) | DOI

[9] N. Virchenko, S. L. Kalla, S. Zaikina, “On some generalized integral transforms”, Handronic Journal, 32:5 (2009), 539–548 | MR | Zbl