Field-theoretic approach for characterization the deformation of multicomponent polycrystalline materials
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 86-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

Most of inorganic structural materials (metallic alloys, ceramics, minerals etc.) are polycrystalline aggregates, consisted of macroscopically large quantity of single-crystal grains (crystallites). The mechanical behavior of the specimen of polycrystalline material is governed by the physical and mechanical processes in the grains and interaction of the grains. Thus the deformation of polycrystalline material is a cooperative phenomenon typical for condensed matter physics and mechanics of heterogeneous materials. The passing of these processes depends on many parameters, including stress states of individual grains and its evolution during macrodeformation. In this paper we note a mathematical analogy between the equations of the mechanics of heterogeneous polycrystalline materials and the equations of quantum theory of particles scattering. This analogy allows to apply the methods of quantum field theory to solution of the equations of solid mechanics for heterogeneous media. We consider the application of Corringa-Kohn-Rostoker method, used in quantum theory for calculating wave function of electrons in metallic alloys, to elasticity of polycrystals. This approach allows, for instance, to calculate probability distribution density function for stresses in grains under arbitrary macrodeformation of polycrystal. Application of the method to classical problem of homogenization gives new formulae for the effective moduli of disordered polycrystalline medium.
Keywords: quantum field theory, polycrystals, stress, strain, tensor of effective elastic moduli.
@article{VSGTU_2013_4_a7,
     author = {A. A. Tashkinov and V. E. Shavshukov},
     title = {Field-theoretic approach for characterization the deformation of multicomponent polycrystalline materials},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {86--97},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a7/}
}
TY  - JOUR
AU  - A. A. Tashkinov
AU  - V. E. Shavshukov
TI  - Field-theoretic approach for characterization the deformation of multicomponent polycrystalline materials
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 86
EP  - 97
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a7/
LA  - ru
ID  - VSGTU_2013_4_a7
ER  - 
%0 Journal Article
%A A. A. Tashkinov
%A V. E. Shavshukov
%T Field-theoretic approach for characterization the deformation of multicomponent polycrystalline materials
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 86-97
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a7/
%G ru
%F VSGTU_2013_4_a7
A. A. Tashkinov; V. E. Shavshukov. Field-theoretic approach for characterization the deformation of multicomponent polycrystalline materials. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 86-97. http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a7/

[1] W. Voight, Lehrbuch der kristallphysik (mit ausschluss der kristalloptik), B. G. Teubner, Leipzig – Berlin, 1928, 978 pp.

[2] G. I. Taylor, “Plastic Strain in Metals”, J. Inst. Met., 62 (1938), 307–324 (Reprinted in the Scientific Papers of G. I. Taylor. 1. Cambridge University Press, Cambridge, U.K., 1958)

[3] I. M. Lifshits, L. N. Rozentsveig, “Theory of elastic properties of polycrystals”, Zh. Eksp. Teor. Fiz., 16:11 (1946), 967–980

[4] T. D. Shermergor, Theory of elasticity of micro-inhomogeneous media, Nauka, Moscow, 1977, 400 pp.

[5] L. D. Landau,, Theoretical physics, v. IX, Statistical physics. Part 2. The theory of a condensed state, Nauka, Moscow, 1978, 448 pp. | MR

[6] A. A. Abrikosov, L. P. Gor'kov, I. E. Dzjaloshinskiy, Methods of quantum field theory in statistical physics, Fizmatlit, Moscow, 1962, 443 pp. | MR

[7] Neil W. Ashcroft, N. David Mermin, Solid State Physics, Saunders College, Fort Worth, 1976, 826 pp.; N. Ashkroft, N. Mermin, Fizika tverdogo tela (v 2-kh tomakh), v. 1, Mir, M., 1979, 399 pp.; т. 2, Мир, М., 1979, 422 с.

[8] L. I. Yastrebov, A. A. Katsnelson, Foundations of One-Electron Theory of Solids, AIP Translation Series, Springer, Berlin, 1987, 335 pp.

[9] V. Shavshukov, A. Tashkinov, Y. Strzhemechny, D. Hui, “Modelling of pseudoplastic deformation of carbon/carbon composites with a pyrocarbon matrix”, Modelling Simul. Mater. Sci. Eng., 16:5 (2008), 055001, 18 pp. | DOI

[10] V. E. Shavshukov, “Stress field distribution in polycrystalline materials”, Fiz. Mezomekh., 15:6 (2012), 85–91