Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_4_a6, author = {A. D. Moskalik}, title = {The application of perturbation method to problem of misaligned tube in conditions of steady-state creep}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {76--85}, publisher = {mathdoc}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a6/} }
TY - JOUR AU - A. D. Moskalik TI - The application of perturbation method to problem of misaligned tube in conditions of steady-state creep JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 76 EP - 85 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a6/ LA - ru ID - VSGTU_2013_4_a6 ER -
%0 Journal Article %A A. D. Moskalik %T The application of perturbation method to problem of misaligned tube in conditions of steady-state creep %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 76-85 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a6/ %G ru %F VSGTU_2013_4_a6
A. D. Moskalik. The application of perturbation method to problem of misaligned tube in conditions of steady-state creep. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 76-85. http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a6/
[1] L. M. Kachanov, Creep Theory, Fizmatgiz, Moscow, 1960, 455 pp.
[2] V. P. Radchenko, E. V. Bashkinova, “Solution of the value boundary problems for steady creep in polar coordinates by the perturbation method”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Tekhnicheskie Nauki, 5 (1998), 86–91
[3] E. V. Bashkinova, “Solution of the value boundary problem of steady creep for non-axisymmetric thick-walled tube”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 16 (2002), 105–110 | DOI
[4] N. N. Popov, V. P. Radchenko, “Analytical solution of the stochastic steady-state creep boundary value problem for a thick-walled tube”, J. Appl. Math. Mech., 76:6 (2012), 738–744 | DOI | MR | Zbl
[5] A. A. Dolzhkovoy, N. N. Popov, “Solution of the nonlinear stochastic creep problem for a thick-walled tube by method of small parameter”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 16 (2002), 84–89 | DOI
[6] N. N. Popov, V. N. Isutkina, “Construction of an Analytical Solution of a Two-Dimensional Stochastic Problem of the Steady Creep for a Thick-Walled Pipe”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2(15) (2007), 90–94 | DOI
[7] D. D. Ivlev, L. V. Ershov, Method of Perturbations in the Theory of an Elastic-Plastic Body, Nauka, Moscow, 1978, 208 pp.
[8] A. P. Kerzhaev, “Elastoplastic state of a thin ring plate at transmitting anisotropy at uniform stretching”, Vestnik of I. Yakovlev Chuvash State Pedagogical University, Line: Mechanics of definable state, 2012, no. 2(12), 174–179
[9] S. O. Fominykh, “Elastoidealplastic condition of anisotropic pipe”, Vestnik of I. Yakovlev Chuvash State Pedagogical University, Line: Mechanics of definable state, 2010, no. 2(8), 623–627
[10] S. O. Fominykh, “Elastoplastic state of a thick-walled pipe at the interaction of different types of plastic anisotropy”, Vestnik of I. Yakovlev Chuvash State Pedagogical University, Line: Mechanics of definable state, 2011, no. 1(9), 201–206
[11] A. F. Nikitenko, Creep and Creep-Rupture Strength of Metallic Materials, Novosib. Gos. Arkhit.-Stroit. Univ., Novosibirsk, 1997, 278 pp.
[12] Yu. N. Rabotnov, Mechanics of Deformable Solids, Nauka, Moscow, 1979, 744 pp.
[13] A. D. Moskalik, “Analysis of the stress-strain state of a thick-walled misaligned cylinder in conditions of steady-state creep under internal pressure by method of small parameter”, Proceedings of the Ninth All-Russian Scientific Conference with international participation. Part 1, Matem. Mod. Kraev. Zadachi, Samara State Technical Univ., Samara, 2013, 140–144
[14] L. E. Elsgolts, Differential Equations and the Calculus of Variations, Nauka, Moscow, 1969, 424 pp. | MR