The application of perturbation method to problem of misaligned tube in conditions of steady-state creep
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 76-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of determining the stress-strain state of the thick-walled misaligned tube under internal pressure on steady-state creep is considered. The task linearization with the perturbation method is carried out. The second approximation of this problem is defined. The effect of misalignment of the tube on the stress-strain state considering the second approximation is analyzed.
Keywords: steady-state creep, thick-walled misaligned tube, second approximation.
Mots-clés : pertubation method
@article{VSGTU_2013_4_a6,
     author = {A. D. Moskalik},
     title = {The application of perturbation method to problem of misaligned tube in conditions of steady-state creep},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {76--85},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a6/}
}
TY  - JOUR
AU  - A. D. Moskalik
TI  - The application of perturbation method to problem of misaligned tube in conditions of steady-state creep
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 76
EP  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a6/
LA  - ru
ID  - VSGTU_2013_4_a6
ER  - 
%0 Journal Article
%A A. D. Moskalik
%T The application of perturbation method to problem of misaligned tube in conditions of steady-state creep
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 76-85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a6/
%G ru
%F VSGTU_2013_4_a6
A. D. Moskalik. The application of perturbation method to problem of misaligned tube in conditions of steady-state creep. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 76-85. http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a6/

[1] L. M. Kachanov, Creep Theory, Fizmatgiz, Moscow, 1960, 455 pp.

[2] V. P. Radchenko, E. V. Bashkinova, “Solution of the value boundary problems for steady creep in polar coordinates by the perturbation method”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Tekhnicheskie Nauki, 5 (1998), 86–91

[3] E. V. Bashkinova, “Solution of the value boundary problem of steady creep for non-axisymmetric thick-walled tube”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 16 (2002), 105–110 | DOI

[4] N. N. Popov, V. P. Radchenko, “Analytical solution of the stochastic steady-state creep boundary value problem for a thick-walled tube”, J. Appl. Math. Mech., 76:6 (2012), 738–744 | DOI | MR | Zbl

[5] A. A. Dolzhkovoy, N. N. Popov, “Solution of the nonlinear stochastic creep problem for a thick-walled tube by method of small parameter”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 16 (2002), 84–89 | DOI

[6] N. N. Popov, V. N. Isutkina, “Construction of an Analytical Solution of a Two-Dimensional Stochastic Problem of the Steady Creep for a Thick-Walled Pipe”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2(15) (2007), 90–94 | DOI

[7] D. D. Ivlev, L. V. Ershov, Method of Perturbations in the Theory of an Elastic-Plastic Body, Nauka, Moscow, 1978, 208 pp.

[8] A. P. Kerzhaev, “Elastoplastic state of a thin ring plate at transmitting anisotropy at uniform stretching”, Vestnik of I. Yakovlev Chuvash State Pedagogical University, Line: Mechanics of definable state, 2012, no. 2(12), 174–179

[9] S. O. Fominykh, “Elastoidealplastic condition of anisotropic pipe”, Vestnik of I. Yakovlev Chuvash State Pedagogical University, Line: Mechanics of definable state, 2010, no. 2(8), 623–627

[10] S. O. Fominykh, “Elastoplastic state of a thick-walled pipe at the interaction of different types of plastic anisotropy”, Vestnik of I. Yakovlev Chuvash State Pedagogical University, Line: Mechanics of definable state, 2011, no. 1(9), 201–206

[11] A. F. Nikitenko, Creep and Creep-Rupture Strength of Metallic Materials, Novosib. Gos. Arkhit.-Stroit. Univ., Novosibirsk, 1997, 278 pp.

[12] Yu. N. Rabotnov, Mechanics of Deformable Solids, Nauka, Moscow, 1979, 744 pp.

[13] A. D. Moskalik, “Analysis of the stress-strain state of a thick-walled misaligned cylinder in conditions of steady-state creep under internal pressure by method of small parameter”, Proceedings of the Ninth All-Russian Scientific Conference with international participation. Part 1, Matem. Mod. Kraev. Zadachi, Samara State Technical Univ., Samara, 2013, 140–144

[14] L. E. Elsgolts, Differential Equations and the Calculus of Variations, Nauka, Moscow, 1969, 424 pp. | MR