Stress concentration at a hooked-fiber textile composite layer with local technological defects under biaxial tension on transversal origin
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 66-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new model has been developed to simulate a woven textile composite layer with a polycrystalline matrix. Based on the numerical solution of the boundary-value problem by the finite-element method, the values of stress concentration caused by local processing defects (break in a fiber, closed internal pore) under symmetric biaxial macrodeformation are obtained. The numerical solution by the finite-element method is received using the part of SALOME-MECA framework, the non-commercial package Code-Aster. The regions of maximum stress disturbance coefficients in the textile composite layer are determined. The cause of marked increase of stress disturbance coefficients is the contact with friction between the fibers of reinforcing skeleton and the shifts are the main mechanisms of polycrystalline matrix damaging. It is shown that application of additional processing operations to fill the formed voids by matrix material can decrease stress concentration and increase the ability of a material to withstand external force loads. The mechanisms responsible for initiation of damages in a polycrystalline matrix are determined.
Keywords: woven textile composite, polycrystalline matrix, local processing defect, contact with friction, break in a fiber, stress concentration factors, symmetric biaxial macrodeformation.
@article{VSGTU_2013_4_a5,
     author = {D. V. Dedkov and A. V. Zaitsev},
     title = {Stress concentration at a hooked-fiber textile composite layer with local technological defects under biaxial tension on transversal origin},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {66--75},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a5/}
}
TY  - JOUR
AU  - D. V. Dedkov
AU  - A. V. Zaitsev
TI  - Stress concentration at a hooked-fiber textile composite layer with local technological defects under biaxial tension on transversal origin
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 66
EP  - 75
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a5/
LA  - ru
ID  - VSGTU_2013_4_a5
ER  - 
%0 Journal Article
%A D. V. Dedkov
%A A. V. Zaitsev
%T Stress concentration at a hooked-fiber textile composite layer with local technological defects under biaxial tension on transversal origin
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 66-75
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a5/
%G ru
%F VSGTU_2013_4_a5
D. V. Dedkov; A. V. Zaitsev. Stress concentration at a hooked-fiber textile composite layer with local technological defects under biaxial tension on transversal origin. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 66-75. http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a5/

[1] V. F. Surovikin, Yu. V. Surovikin, M. S. Tsekhanovich, “New fields in the technology for manufacturing carbon-carbon materials. Application of carbon-carbon materials”, Rus. J. Gen. Chem., 77:12 (2007), 2301–2310 | DOI

[2] D. V. Dedkov, A. V. Zaitsev, A. A. Tashkinov, “Stress concentration at a hooked-fiber textile composite layer with closed internal pores”, Vestnik PNIPU. Mekhanika, 2011, no. 4, 29–36

[3] D. V. Dedkov, A. A. Tashkinov, “Stress concentration coefficients of a woven textile composite layer with local processing defects under pure forming conditions”, Computational Continuum Mechanics, 2013, no. 6, 103–109 | DOI

[4] A. S. Imankulova, Textile Composites, MOK, Bishkek, 2005, 152 pp.

[5] J. Cao, R. Akkerman, P. Boisse, J. Chen, H. S. Cheng, E. F. de Graaf, J. L. Gorczyca, P. Harrison, G. Hivet, J. Launay, W. Lee, L. Liu, S. V. Lomov, A. Long, E. de Luycker, F. Morestin, J. Padvoiskis, X. Q. Peng, J. Sherwood, Tz. Stoilova, X. M. Tao, I. Verpoest, A. Willems, J. Wiggers, T. X. Yu, B. Zhu, “Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results”, Compos. Part A: Appl. Sci. Manuf., 39:6 (2008), 1037–53 | DOI

[6] P. Harrison, M. J. Clifford, A. C. Long, “Shear characterisation of viscous woven textile composites: a comparison between picture frame and bias extension experiments”, Composites Sci. Technol., 64:10–11 (2004), 1453–1465 | DOI

[7] Yu. M. Tarnopol'skii, A. V. Roze, I. G. Zhigun, G. M. Gunyaev, “Structural characteristics of materials reinforced with high-modulus fibers”, Polymer Mechanics, 7:4 (1971), 600–609 | DOI