Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_4_a2, author = {Ya. A. Sharifov}, title = {Optimal control problem for the impulsive differential equations with non-local boundary conditions}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {34--45}, publisher = {mathdoc}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a2/} }
TY - JOUR AU - Ya. A. Sharifov TI - Optimal control problem for the impulsive differential equations with non-local boundary conditions JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 34 EP - 45 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a2/ LA - ru ID - VSGTU_2013_4_a2 ER -
%0 Journal Article %A Ya. A. Sharifov %T Optimal control problem for the impulsive differential equations with non-local boundary conditions %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 34-45 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a2/ %G ru %F VSGTU_2013_4_a2
Ya. A. Sharifov. Optimal control problem for the impulsive differential equations with non-local boundary conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 34-45. http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a2/
[1] A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995, ix+467 pp. | MR | Zbl
[2] A. Halanay, D. Wexler, Teoria calitativă a sistemelor cu impulsuri (Qualitative Theory of Sampled-Data Systems), Editura Academiei Republicii Socialiste România, Bucuresti, 1968, 312 pp. ; A. Khalanai, D. Veksler, Kachestvennaya teoriya impulsnykh sistem, Mir, Moskva, 1971, 309 pp. | MR | Zbl | MR
[3] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, Series in Modern Applied Mathematics, 6, Singapore, World Scientific, 1989, xii+273 pp. | MR | Zbl
[4] M. Benchohra, J. Henderson, S. Ntouyas, Impulsive differential equations and inclusions, Contemporary Mathematics and Its Applications, 2, New York, Hindawi Publishing Corporation, 2006, xiv+366 pp. | MR | Zbl
[5] B. Selvaraj, M. Mallika Arjunan, V. Kavitha, “Existence of solutions for impulsive nonlinear differential equations with nonlocal conditions”, J. KSIAM, 13:3 (2009), 203–215 http://mathnet.kaist.ac.kr/mathnet/thesis_file/jksiam-v13n3p203.pdf | MR
[6] A. Anguraj, M. Mallika Arjunan, “Existence and uniqueness of mild and classical solutions of impulsive evolution equations”, Electron. J. Differential Equations, 2005:111 (2005), 1–8 http://www.kurims.kyoto-u.ac.jp/EMIS/journals/EJDE/Volumes/2005/111/anguraj.pdf | MR
[7] S. Ji, S. Wen, “Nonlocal Cauchy problem for impulsive differential equations in Banach spaces”, Int. J. Nonlinear Sci, 10:1 (2010), 88–95 | MR | Zbl
[8] M. Li, M. Han, “Existence for neutral impulsive functional differential equations with nonlocal conditions”, Indag. Math. (N.S.), 20:3 (2009), 435–451 | DOI | MR | Zbl
[9] A. M. Samoylenko, N.I. Ronto, Numerical-analytic methods for investigating the solutions of boundary value problems, Naukova Dumka, Kiev, 1986, 223 pp. | MR | Zbl
[10] F. P. Vasilyev, Optimization methods, Factorial Press, Moscow, 2002, 823 pp.