Optimal control problem for the impulsive differential equations with non-local boundary conditions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 34-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The optimal control problem is investigated, where the state of the controlled system is described by the impulsive differential equations with non-local boundary conditions. The existence and uniqueness of the non-local impulsive boundary problem by fixed admissible controls are proved using the contraction mapping principle. The gradient of the functional is calculated under certain conditions on the initial data. The necessary conditions for optimality of the first order are obtained.
Keywords: non-local boundary conditions, impulsive systems, necessary conditions of optimality, gradient of functional, existence and uniqueness of the solution.
@article{VSGTU_2013_4_a2,
     author = {Ya. A. Sharifov},
     title = {Optimal control problem for the impulsive differential equations with non-local boundary conditions},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {34--45},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a2/}
}
TY  - JOUR
AU  - Ya. A. Sharifov
TI  - Optimal control problem for the impulsive differential equations with non-local boundary conditions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 34
EP  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a2/
LA  - ru
ID  - VSGTU_2013_4_a2
ER  - 
%0 Journal Article
%A Ya. A. Sharifov
%T Optimal control problem for the impulsive differential equations with non-local boundary conditions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 34-45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a2/
%G ru
%F VSGTU_2013_4_a2
Ya. A. Sharifov. Optimal control problem for the impulsive differential equations with non-local boundary conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 34-45. http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a2/

[1] A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995, ix+467 pp. | MR | Zbl

[2] A. Halanay, D. Wexler, Teoria calitativă a sistemelor cu impulsuri (Qualitative Theory of Sampled-Data Systems), Editura Academiei Republicii Socialiste România, Bucuresti, 1968, 312 pp. ; A. Khalanai, D. Veksler, Kachestvennaya teoriya impulsnykh sistem, Mir, Moskva, 1971, 309 pp. | MR | Zbl | MR

[3] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, Series in Modern Applied Mathematics, 6, Singapore, World Scientific, 1989, xii+273 pp. | MR | Zbl

[4] M. Benchohra, J. Henderson, S. Ntouyas, Impulsive differential equations and inclusions, Contemporary Mathematics and Its Applications, 2, New York, Hindawi Publishing Corporation, 2006, xiv+366 pp. | MR | Zbl

[5] B. Selvaraj, M. Mallika Arjunan, V. Kavitha, “Existence of solutions for impulsive nonlinear differential equations with nonlocal conditions”, J. KSIAM, 13:3 (2009), 203–215 http://mathnet.kaist.ac.kr/mathnet/thesis_file/jksiam-v13n3p203.pdf | MR

[6] A. Anguraj, M. Mallika Arjunan, “Existence and uniqueness of mild and classical solutions of impulsive evolution equations”, Electron. J. Differential Equations, 2005:111 (2005), 1–8 http://www.kurims.kyoto-u.ac.jp/EMIS/journals/EJDE/Volumes/2005/111/anguraj.pdf | MR

[7] S. Ji, S. Wen, “Nonlocal Cauchy problem for impulsive differential equations in Banach spaces”, Int. J. Nonlinear Sci, 10:1 (2010), 88–95 | MR | Zbl

[8] M. Li, M. Han, “Existence for neutral impulsive functional differential equations with nonlocal conditions”, Indag. Math. (N.S.), 20:3 (2009), 435–451 | DOI | MR | Zbl

[9] A. M. Samoylenko, N.I. Ronto, Numerical-analytic methods for investigating the solutions of boundary value problems, Naukova Dumka, Kiev, 1986, 223 pp. | MR | Zbl

[10] F. P. Vasilyev, Optimization methods, Factorial Press, Moscow, 2002, 823 pp.