Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_4_a16, author = {O. I. Cherevatenko}, title = {Varieties of linear algebras of polynomial growth}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {7--14}, publisher = {mathdoc}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a16/} }
TY - JOUR AU - O. I. Cherevatenko TI - Varieties of linear algebras of polynomial growth JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 7 EP - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a16/ LA - ru ID - VSGTU_2013_4_a16 ER -
O. I. Cherevatenko. Varieties of linear algebras of polynomial growth. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 7-14. http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a16/
[1] A. Giambruno, S. P. Mishchenko, “Polynomial growth of the codimentions: a characterization”, Proc. Amer. Math. Soc., 138:3 (2010), 853–859 | DOI | MR | Zbl
[2] V. Drensky, Free algebras and PI-algebras. Graduate course in algebra, Springer-Verlag, Singapore, 2000, xii+271 pp. | MR | Zbl
[3] A. R. Kemer, “Spechtianess of T-ideals with polynomial growth of the co-dimensions”, Sib. Mat. Zh., 19:1 (1978), 54–69 | MR | Zbl
[4] “Varieties of Lie algebras with two–step nilpotent commutant”, Vestsi Akad. Navuk BSSR. Ser. Fiz.-Mat. Navuk, 1987, no. 6, 39–43
[5] I. I. Benediktovich, A. E. Zalesskiy, “$T$-ideals of free Lie algebras with polynomial growth of a sequence of codimensionalities”, Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk, 1980, no. 3, 5–10 | MR | Zbl
[6] S. P. Mischenko, “O mnogoobraziyakh polinomialnogo rosta algebr Li nad polem kharakteristiki nul”, Matem. zametki, 40:6 (1986), 713–721 | MR | Zbl
[7] S. Mishchenko, A. Valenti, “A Leibniz variety with almost polynomial growth”, J. Pure Appl. Algebra, 202:1–3 (2005), 82–101 | DOI | MR | Zbl
[8] S. P. Mischenko, O. I. Cherevatenko, “Neobkhodimye i dostatochnye usloviya polinomialnosti rosta mnogoobraziya algebr Leibnitsa”, Fundament. i prikl. matem., 12:8 (2006), 207–215 ; S. P. Mishchenko, O. I. Cherevatenko, “Necessary and sufficient conditions for a variety of Leibniz algebras to have polynomial growth”, J. Math. Sci., 152:2 (2008), 282–287 | MR | Zbl | DOI
[9] S. P. Mishchenko, O. I. Cherevatenko, “Variety of Leibniz algebras of weak growth”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2006, no. 9(49), 19–23
[10] O. I. Cherevatenko, “On nilpotent Leibnitz algebras”, Nauchnyye vedomosti BelGU. Matematika. Fizika, 2012, no. 17(136), 132–136
[11] S. P. Mishchenko, V. M. Petrogradsky, A. Regev, “Poisson PI algebras”, Trans. Amer. Math. Soc., 359:10 (2007), 4669–4694 | DOI | MR | Zbl
[12] S. M. Ratseev, “Ekvivalentnye usloviya polinomialnosti rosta mnogoobrazii algebr Puassona”, Vestn. Mosk. univ. Ser. 1. Matematika. Mekhanika, 67:5 (2012), 8–13 | MR | Zbl
[13] S. M. Ratseev, “Algebry Puassona polinomialnogo rosta”, Sib. matem. zhurn., 54:3 (2013), 700–711 | MR | Zbl
[14] S. M. Ratseev, “Commutative Leibniz–Poisson algebras of polynomial growth”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2012, no. 3/1(94), 54–65
[15] S. M. Ratseev, “Neobkhodimye i dostatochnye usloviya polinomialnosti rosta mnogoobrazii algebr Leibnitsa–Puassona”, Izv. vuzov. Matem., 2014, no. 3, 33–39 | Zbl