Varieties of linear algebras of polynomial growth
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 7-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is survey of results of investigations on varieties of linear algebras of polynomial growth. We give equivalent conditions of the polynomial codimension growth of a variety of associative algebras, Lie algebras, Leibniz algebras, Poisson algebras, Leibniz–Poisson algebras. It is shown that in the study of varieties of linear algebras of polynomial growth varieties of almost polynomial growth play an important role.
Keywords: associative algebra, Lie algebra, variety of algebras, growth of a variety.
Mots-clés : Poisson algebra
@article{VSGTU_2013_4_a16,
     author = {O. I. Cherevatenko},
     title = {Varieties of linear algebras of polynomial growth},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {7--14},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a16/}
}
TY  - JOUR
AU  - O. I. Cherevatenko
TI  - Varieties of linear algebras of polynomial growth
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 7
EP  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a16/
LA  - ru
ID  - VSGTU_2013_4_a16
ER  - 
%0 Journal Article
%A O. I. Cherevatenko
%T Varieties of linear algebras of polynomial growth
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 7-14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a16/
%G ru
%F VSGTU_2013_4_a16
O. I. Cherevatenko. Varieties of linear algebras of polynomial growth. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 7-14. http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a16/

[1] A. Giambruno, S. P. Mishchenko, “Polynomial growth of the codimentions: a characterization”, Proc. Amer. Math. Soc., 138:3 (2010), 853–859 | DOI | MR | Zbl

[2] V. Drensky, Free algebras and PI-algebras. Graduate course in algebra, Springer-Verlag, Singapore, 2000, xii+271 pp. | MR | Zbl

[3] A. R. Kemer, “Spechtianess of T-ideals with polynomial growth of the co-dimensions”, Sib. Mat. Zh., 19:1 (1978), 54–69 | MR | Zbl

[4] “Varieties of Lie algebras with two–step nilpotent commutant”, Vestsi Akad. Navuk BSSR. Ser. Fiz.-Mat. Navuk, 1987, no. 6, 39–43

[5] I. I. Benediktovich, A. E. Zalesskiy, “$T$-ideals of free Lie algebras with polynomial growth of a sequence of codimensionalities”, Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk, 1980, no. 3, 5–10 | MR | Zbl

[6] S. P. Mischenko, “O mnogoobraziyakh polinomialnogo rosta algebr Li nad polem kharakteristiki nul”, Matem. zametki, 40:6 (1986), 713–721 | MR | Zbl

[7] S. Mishchenko, A. Valenti, “A Leibniz variety with almost polynomial growth”, J. Pure Appl. Algebra, 202:1–3 (2005), 82–101 | DOI | MR | Zbl

[8] S. P. Mischenko, O. I. Cherevatenko, “Neobkhodimye i dostatochnye usloviya polinomialnosti rosta mnogoobraziya algebr Leibnitsa”, Fundament. i prikl. matem., 12:8 (2006), 207–215 ; S. P. Mishchenko, O. I. Cherevatenko, “Necessary and sufficient conditions for a variety of Leibniz algebras to have polynomial growth”, J. Math. Sci., 152:2 (2008), 282–287 | MR | Zbl | DOI

[9] S. P. Mishchenko, O. I. Cherevatenko, “Variety of Leibniz algebras of weak growth”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2006, no. 9(49), 19–23

[10] O. I. Cherevatenko, “On nilpotent Leibnitz algebras”, Nauchnyye vedomosti BelGU. Matematika. Fizika, 2012, no. 17(136), 132–136

[11] S. P. Mishchenko, V. M. Petrogradsky, A. Regev, “Poisson PI algebras”, Trans. Amer. Math. Soc., 359:10 (2007), 4669–4694 | DOI | MR | Zbl

[12] S. M. Ratseev, “Ekvivalentnye usloviya polinomialnosti rosta mnogoobrazii algebr Puassona”, Vestn. Mosk. univ. Ser. 1. Matematika. Mekhanika, 67:5 (2012), 8–13 | MR | Zbl

[13] S. M. Ratseev, “Algebry Puassona polinomialnogo rosta”, Sib. matem. zhurn., 54:3 (2013), 700–711 | MR | Zbl

[14] S. M. Ratseev, “Commutative Leibniz–Poisson algebras of polynomial growth”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2012, no. 3/1(94), 54–65

[15] S. M. Ratseev, “Neobkhodimye i dostatochnye usloviya polinomialnosti rosta mnogoobrazii algebr Leibnitsa–Puassona”, Izv. vuzov. Matem., 2014, no. 3, 33–39 | Zbl