Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_4_a10, author = {A. E. Derevyanka}, title = {Application of the {Mathematical} {Models} {Used} for {Estimating} the {Impact} {Probability} of {Asteroids} 99942 {Apophis} and 2011 {AG5}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {115--121}, publisher = {mathdoc}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a10/} }
TY - JOUR AU - A. E. Derevyanka TI - Application of the Mathematical Models Used for Estimating the Impact Probability of Asteroids 99942 Apophis and 2011 AG5 JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 115 EP - 121 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a10/ LA - ru ID - VSGTU_2013_4_a10 ER -
%0 Journal Article %A A. E. Derevyanka %T Application of the Mathematical Models Used for Estimating the Impact Probability of Asteroids 99942 Apophis and 2011 AG5 %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 115-121 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a10/ %G ru %F VSGTU_2013_4_a10
A. E. Derevyanka. Application of the Mathematical Models Used for Estimating the Impact Probability of Asteroids 99942 Apophis and 2011 AG5. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 115-121. http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a10/
[1] S. M. Ermakov, The Monte Carlo method and related problems, Nauka, Moscow, 1975, 472 pp. | MR | Zbl
[2] V. A. Brumberg, Relativistic celestial mechanics, Nauka, Moscow, 1972, 382 pp. | MR | Zbl
[3] N. B. Zheleznov, “The influence of the correlations between an asteroid's orbital parameters on the estimation of the probability of planetary collision by the Monte Carlo method”, Solar System Research, 44:2 (2010), 136–143 | DOI
[4] M. Matsumoto, T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator”, ACM Transactions on Modeling and Computer Simulation (TOMACS), 8:1 (1998), 3–30 | DOI | Zbl
[5] E. Everhart, “Implicit single-sequence methods for integrating orbits”, Celestial mechanics, 10:1 (1974), 35–55 | DOI | MR | Zbl
[6] A. F. Zausaev, A. A. Zausaev, “Employment of the modification Everhart's method for solution of problems of celestial mechanics”, Matem. Mod., 20:11 (2008), 109–114 | Zbl
[7] A. F. Zausaev, A. E. Derevyanka, “Comparative analysis of mathematical models for estimating the impact probability of asteroid Apophis”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 2(27), 192–196 | DOI
[8] J. D. Giorginia, L. A. M. Benner, S. J. Ostro, M. C. Nolan, M. W. Busch, “Predicting the Earth encounters of (99942) Apophis”, Icarus, 193:1 (2008), 1–19 | DOI
[9] E. A. Smirnov, “The use of interval arithmetic in predicting the orbits of small bodies”, Astronomy and World Heritage across time and continents: Proc. Internat. Conf. Section of Near-Earth Astronomy, Kazan Federal University, Kazan, 2009, 101–102
[10] D. R. Adamo, Earth Risk Corridor Computations for 2011 AG5 on 5 February 2040, 3 March 2012 () http://astrogatorsguild.com/wp-content/uploads/2012/03/RiskCorr2011-AG5r2.pdf