Riemann method for solving non-local boundary value problems for the third order pseudoparabolic equations
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 15-24

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence and uniqueness of regular solutions of non-local boundary value problems for the third order pseudoparabolic equations with variable coefficients are proved using the Riemann function method.
Keywords: boundary value problems, the Riemann function method, partial differential equation of the third order
Mots-clés : non-local condition, pseudoparabolic equation.
@article{VSGTU_2013_4_a0,
     author = {M. H. Beshtokov},
     title = {Riemann method for solving non-local boundary value problems for the third order pseudoparabolic equations},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {15--24},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a0/}
}
TY  - JOUR
AU  - M. H. Beshtokov
TI  - Riemann method for solving non-local boundary value problems for the third order pseudoparabolic equations
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 15
EP  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a0/
LA  - ru
ID  - VSGTU_2013_4_a0
ER  - 
%0 Journal Article
%A M. H. Beshtokov
%T Riemann method for solving non-local boundary value problems for the third order pseudoparabolic equations
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 15-24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a0/
%G ru
%F VSGTU_2013_4_a0
M. H. Beshtokov. Riemann method for solving non-local boundary value problems for the third order pseudoparabolic equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2013), pp. 15-24. http://geodesic.mathdoc.fr/item/VSGTU_2013_4_a0/