Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_3_a9, author = {S. N. Aristov and E. Yu. Prosviryakov}, title = {On one class of analytic solutions of the stationary axisymmetric convection {B\'enard--Marangoni} viscous incompressible fluid}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {110--118}, publisher = {mathdoc}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a9/} }
TY - JOUR AU - S. N. Aristov AU - E. Yu. Prosviryakov TI - On one class of analytic solutions of the stationary axisymmetric convection B\'enard--Marangoni viscous incompressible fluid JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 110 EP - 118 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a9/ LA - ru ID - VSGTU_2013_3_a9 ER -
%0 Journal Article %A S. N. Aristov %A E. Yu. Prosviryakov %T On one class of analytic solutions of the stationary axisymmetric convection B\'enard--Marangoni viscous incompressible fluid %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 110-118 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a9/ %G ru %F VSGTU_2013_3_a9
S. N. Aristov; E. Yu. Prosviryakov. On one class of analytic solutions of the stationary axisymmetric convection B\'enard--Marangoni viscous incompressible fluid. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 110-118. http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a9/
[1] A. V. Getling, “Formation of spatial structures in Rayleigh–Bénard convection”, Sov. Phys. Usp., 34:9 (1991), 737–776 | DOI | DOI
[2] F. A. Garifullin, “Free convection in horizontal liquid layers”, Sorosovsk. Obrazovat. Zh., 6:8 (2000), 108–114
[3] H. Bénard, Les tourbillons cellulaires dans une nappe liquide propageant de la chaleur par convection, en régime permanent. Thèse, Gauthier-Villars, Paris, 1901, 88 pp. | Zbl
[4] H. Bénard, “Étude expérimentale des courants de convection dans une nappe liquide. — Régime permanent: tourbillons cellulaires”, J. Phys. Theor. Appl., 9:1 (1900), 513–524 | DOI
[5] H. Bénard, “Les tourbillons cellulaires dans une nappe liquide. – Méthodes optiques d'observation et d'enregistrement”, J. Phys. Theor. Appl., 10:1 (1901), 254–266 | DOI
[6] N. V. Nikitin, S. A. Nikitin, V. I. Polezhaev, “Convective Instabilities in the Hydrodynamic Model of the Czochralski Crystal Growth”, Usp. Mekh., 2:4 (2003), 3–45
[7] G. S. Golitsin, Natural processes and phenomena: waves, planets, convection, climate, statistics, Fizmatlit, Moscow, 2004, 344 pp.
[8] V. V. Alekseev, A. M. Gusev, “Free convection in geophysical processes”, Sov. Phys. Usp., 26:2 (1983), 906–922 | DOI | DOI
[9] A. S. Monin, Fundamentals of Geophysical Fluid Dynamics, Gidrometeoizdat, Leningrad, 1988, 424 pp.
[10] A. Gill, Atmosphere-ocean Dynamics, v. 1, Mir, Moscow, 1986, 397 pp.
[11] R. V. Birikh, “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 7:3 (1966), 43–44 | DOI
[12] L. G. Napolitano, “Plane Marangoni-Poiseuille flow of two immissible fluids”, Acta Astronaut., 7:4–5 (1980), 461–478 | DOI | MR | Zbl
[13] V. K. Andreev, Birikh solution of convection equations and some of its generalizations, Preprint No. 1–10, Inst. Computer Modeling, Sib. Branch, Russian Acad. of Sci., Krasnoyarsk, 2010, 68 pp.
[14] O. Goncharova, O. Kabov, “Gas flow and thermocapillary effects of fluid flow dynamics in a horizontal layer”, Microgravity Sci. Technol., 21:1 (2009), 129–137 | DOI | MR
[15] L. Kh. Ingel, M. V. Kalashnik, “Nontrivial features in the hydrodynamics of seawater and other stratified solutions”, Phys. Usp., 55:4 (2012), 356–381 | DOI | DOI
[16] V. S. Beskin, “Axisymmetric steady flows in astrophysics”, Phys. Usp., 46:11 (2003), 1209–1214 | DOI | DOI
[17] L. D. Landau, E. M. Lifshits, Theoretical physics, v. VI, Fluid dynamics, Nauka, Moscow, 2006, 736 pp. | MR
[18] G. Z. Gershuni, E. M. Zhukhovitskii, Convective stability of incompressible fluids, Nauka, Moscow, 1972, 392 pp.
[19] S. N. Aristov, Eddy currents in thin liquid layers, Dr. Sci. Phys. Math. Thesis, Vladivostok, 1990, 32 pp.
[20] A. F. Sidorov, “On a class of solutions of the equations of gas dynamics and natural convection”, Numerical and analytical methods for solving problems of continuum mechanics, ed. A. F. Sidorov, Yu. N. Kondyurin, Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Sverdlovsk, 1981, 101–117 | MR
[21] C. C. Lin, “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Rational Mech. Anal., 1:1 (1958), 391–395 | DOI | MR | Zbl
[22] E. E. Tyrtyshnikov, Matrix analysis and linear algebra, Fizmatlit, Moscow, 2007, 480 pp.
[23] S. P. Novikov, A. T. Fomenko, Elements of differential geometry and topology, Nauka, Moscow, 1987, 432 pp. | MR
[24] V. I. Arnol'd, Catastrophe theory, Nauka, Moscow, 1990, 128 pp. | MR
[25] T. Poston, I. Stewart, Catastrophe theory and its applications, Mir, Moscow, 1980, 608 pp. | MR | Zbl
[26] R. Gilmore, Catastrophe theory for scientists and engineers, v. 1, Mir, Moscow, 1984, 350 pp. | Zbl
[27] R. Khorn, Ch. Dzhonson, Matrix analysis, Mir, Moscow, 1989, 655 pp. | MR
[28] M. M. Postnikov, Stable polynomials, Nauka, Moscow, 1981, 176 pp. | MR