On one class of analytic solutions of the stationary axisymmetric convection B\'enard--Marangoni viscous incompressible fluid
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 110-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to find solutions for the system of equations Oberbeck–Boussinesq flat convection Bénard–Marangoni a viscous incompressible fluid. In this viscous incompressible fluid the radial component of the temperature gradient may become zero. It is shown that the initial system may be reduced to the system of equations of ordinary differential equations of the eleventh order. We obtain the exact solution at the point of the extremum of the temperature (at zero including Grasgof's). Integration of equations is carried out in dimensionless variables, which are non-classical way: put the scale factor for each variable, and not by linear characteristic size of the layer. The solution is the initial approximation to the solution of convection Bénard–Marangoni in numbers Grasgof's, the big zero.
Keywords: axisymmetric thermocapillary convection (convection Bénard–Marangoni), localized parabolic heaters, isolines, eigenvalues, localization of polynomials roots, localization of eigenvalues of the matrix.
Mots-clés : exact solution, Hessian matrix
@article{VSGTU_2013_3_a9,
     author = {S. N. Aristov and E. Yu. Prosviryakov},
     title = {On one class of analytic solutions of the stationary axisymmetric convection {B\'enard--Marangoni} viscous incompressible fluid},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {110--118},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a9/}
}
TY  - JOUR
AU  - S. N. Aristov
AU  - E. Yu. Prosviryakov
TI  - On one class of analytic solutions of the stationary axisymmetric convection B\'enard--Marangoni viscous incompressible fluid
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 110
EP  - 118
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a9/
LA  - ru
ID  - VSGTU_2013_3_a9
ER  - 
%0 Journal Article
%A S. N. Aristov
%A E. Yu. Prosviryakov
%T On one class of analytic solutions of the stationary axisymmetric convection B\'enard--Marangoni viscous incompressible fluid
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 110-118
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a9/
%G ru
%F VSGTU_2013_3_a9
S. N. Aristov; E. Yu. Prosviryakov. On one class of analytic solutions of the stationary axisymmetric convection B\'enard--Marangoni viscous incompressible fluid. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 110-118. http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a9/

[1] A. V. Getling, “Formation of spatial structures in Rayleigh–Bénard convection”, Sov. Phys. Usp., 34:9 (1991), 737–776 | DOI | DOI

[2] F. A. Garifullin, “Free convection in horizontal liquid layers”, Sorosovsk. Obrazovat. Zh., 6:8 (2000), 108–114

[3] H. Bénard, Les tourbillons cellulaires dans une nappe liquide propageant de la chaleur par convection, en régime permanent. Thèse, Gauthier-Villars, Paris, 1901, 88 pp. | Zbl

[4] H. Bénard, “Étude expérimentale des courants de convection dans une nappe liquide. — Régime permanent: tourbillons cellulaires”, J. Phys. Theor. Appl., 9:1 (1900), 513–524 | DOI

[5] H. Bénard, “Les tourbillons cellulaires dans une nappe liquide. – Méthodes optiques d'observation et d'enregistrement”, J. Phys. Theor. Appl., 10:1 (1901), 254–266 | DOI

[6] N. V. Nikitin, S. A. Nikitin, V. I. Polezhaev, “Convective Instabilities in the Hydrodynamic Model of the Czochralski Crystal Growth”, Usp. Mekh., 2:4 (2003), 3–45

[7] G. S. Golitsin, Natural processes and phenomena: waves, planets, convection, climate, statistics, Fizmatlit, Moscow, 2004, 344 pp.

[8] V. V. Alekseev, A. M. Gusev, “Free convection in geophysical processes”, Sov. Phys. Usp., 26:2 (1983), 906–922 | DOI | DOI

[9] A. S. Monin, Fundamentals of Geophysical Fluid Dynamics, Gidrometeoizdat, Leningrad, 1988, 424 pp.

[10] A. Gill, Atmosphere-ocean Dynamics, v. 1, Mir, Moscow, 1986, 397 pp.

[11] R. V. Birikh, “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 7:3 (1966), 43–44 | DOI

[12] L. G. Napolitano, “Plane Marangoni-Poiseuille flow of two immissible fluids”, Acta Astronaut., 7:4–5 (1980), 461–478 | DOI | MR | Zbl

[13] V. K. Andreev, Birikh solution of convection equations and some of its generalizations, Preprint No. 1–10, Inst. Computer Modeling, Sib. Branch, Russian Acad. of Sci., Krasnoyarsk, 2010, 68 pp.

[14] O. Goncharova, O. Kabov, “Gas flow and thermocapillary effects of fluid flow dynamics in a horizontal layer”, Microgravity Sci. Technol., 21:1 (2009), 129–137 | DOI | MR

[15] L. Kh. Ingel, M. V. Kalashnik, “Nontrivial features in the hydrodynamics of seawater and other stratified solutions”, Phys. Usp., 55:4 (2012), 356–381 | DOI | DOI

[16] V. S. Beskin, “Axisymmetric steady flows in astrophysics”, Phys. Usp., 46:11 (2003), 1209–1214 | DOI | DOI

[17] L. D. Landau, E. M. Lifshits, Theoretical physics, v. VI, Fluid dynamics, Nauka, Moscow, 2006, 736 pp. | MR

[18] G. Z. Gershuni, E. M. Zhukhovitskii, Convective stability of incompressible fluids, Nauka, Moscow, 1972, 392 pp.

[19] S. N. Aristov, Eddy currents in thin liquid layers, Dr. Sci. Phys. Math. Thesis, Vladivostok, 1990, 32 pp.

[20] A. F. Sidorov, “On a class of solutions of the equations of gas dynamics and natural convection”, Numerical and analytical methods for solving problems of continuum mechanics, ed. A. F. Sidorov, Yu. N. Kondyurin, Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Sverdlovsk, 1981, 101–117 | MR

[21] C. C. Lin, “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Rational Mech. Anal., 1:1 (1958), 391–395 | DOI | MR | Zbl

[22] E. E. Tyrtyshnikov, Matrix analysis and linear algebra, Fizmatlit, Moscow, 2007, 480 pp.

[23] S. P. Novikov, A. T. Fomenko, Elements of differential geometry and topology, Nauka, Moscow, 1987, 432 pp. | MR

[24] V. I. Arnol'd, Catastrophe theory, Nauka, Moscow, 1990, 128 pp. | MR

[25] T. Poston, I. Stewart, Catastrophe theory and its applications, Mir, Moscow, 1980, 608 pp. | MR | Zbl

[26] R. Gilmore, Catastrophe theory for scientists and engineers, v. 1, Mir, Moscow, 1984, 350 pp. | Zbl

[27] R. Khorn, Ch. Dzhonson, Matrix analysis, Mir, Moscow, 1989, 655 pp. | MR

[28] M. M. Postnikov, Stable polynomials, Nauka, Moscow, 1981, 176 pp. | MR