Method for nonlinear stochastic problem of creep solving for a plane taking into account damage of the material
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 69-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The analytical method for nonlinear stochastic problem of creep solving for a plane taking into account the damage of the material and the third stage of creep is developed. Determinative creep equations are taken in accordance with the energy version of the nonlinear theory of a viscous flow in a stochastic form. Stochasticity of the material is determined by two random functions of coordinates $x_1$ and $x_2$. Linearization of the problem relative to the nominal stress on the basis of small parameter method is produced. The variance of the random stress fields is found on the hypothesis that processes of creep and damage accumulation are independent. The case when the plane is stretched in two orthogonal directions in proportion to some parameter is given as an example. The provided analysis showed that at the third stage of creep magnitude stress fluctuation is increased relative to the value at the stage in steady-state creep.
Keywords: small parameter method, third stage of creep, damage, stochastic problem, random function.
Mots-clés : stress fluctuation
@article{VSGTU_2013_3_a5,
     author = {N. N. Popov and O. Chernova},
     title = {Method for nonlinear stochastic problem of creep solving for a plane taking into account damage of the material},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {69--76},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a5/}
}
TY  - JOUR
AU  - N. N. Popov
AU  - O. Chernova
TI  - Method for nonlinear stochastic problem of creep solving for a plane taking into account damage of the material
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 69
EP  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a5/
LA  - ru
ID  - VSGTU_2013_3_a5
ER  - 
%0 Journal Article
%A N. N. Popov
%A O. Chernova
%T Method for nonlinear stochastic problem of creep solving for a plane taking into account damage of the material
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 69-76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a5/
%G ru
%F VSGTU_2013_3_a5
N. N. Popov; O. Chernova. Method for nonlinear stochastic problem of creep solving for a plane taking into account damage of the material. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 69-76. http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a5/

[1] N. N. Popov, S. A. Zabelin, “Solution of nonlinear stochastic creep problem for plane stress state using small parameter method”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2006, no. 43, 106–112 | DOI

[2] N. N. Popov, O. Chernova, “Solution of nonlinear creep problem for stochastically inhomogeneous plane on the basis of the second approximation for small parameter method”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 4(25), 50–58 | DOI

[3] N. N. Popov, V. P. Radchenko, “Nonlinear stochastic creep problem for an inhomogeneous plane with the damage to the material taken into account”, J. Appl. Mech. Tech. Phys., 48:2 (2007), 265–270 | DOI | Zbl

[4] V. P. Radchenko, Yu. A. Eremin, Rheological deformation and fracture of materials and structural elements, Mashinostroenie-1, Moscow, 2004, 265 pp.

[5] V. P. Radchenko, N. N. Popov, “Statistical characteristics of stress fields and creep strains of a stochastically inhomogeneous plane”, Izv. Vuzov. Mashinostroenie, 2006, no. 2, 3–11

[6] N. N. Popov, L. V. Kovalenko, M. A. Yashin, “Solution of plane nonlinear stochastic problem with spectral representation method”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 2(19), 99–106 | DOI

[7] L. V. Kovalenko, N. N. Popov, V. P. Radchenko, “Solution of the plane stochastic creep boundary value problem”, J. Appl. Math. Mech., 73:6 (2009), 727–733 | DOI | MR | Zbl

[8] A. A. Sveshnikov, Applied Methods of the Theory of Random Functions, Pergamon, Oxford, 1966, ix+321 pp. | MR | MR | Zbl | Zbl

[9] Regularities of Creep and Creep Strength, ed. S. A. Shesterikov, Mashinostroenie, Moscow, 1983, 102 pp.