Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_3_a5, author = {N. N. Popov and O. Chernova}, title = {Method for nonlinear stochastic problem of creep solving for a plane taking into account damage of the material}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {69--76}, publisher = {mathdoc}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a5/} }
TY - JOUR AU - N. N. Popov AU - O. Chernova TI - Method for nonlinear stochastic problem of creep solving for a plane taking into account damage of the material JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 69 EP - 76 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a5/ LA - ru ID - VSGTU_2013_3_a5 ER -
%0 Journal Article %A N. N. Popov %A O. Chernova %T Method for nonlinear stochastic problem of creep solving for a plane taking into account damage of the material %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 69-76 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a5/ %G ru %F VSGTU_2013_3_a5
N. N. Popov; O. Chernova. Method for nonlinear stochastic problem of creep solving for a plane taking into account damage of the material. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 69-76. http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a5/
[1] N. N. Popov, S. A. Zabelin, “Solution of nonlinear stochastic creep problem for plane stress state using small parameter method”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2006, no. 43, 106–112 | DOI
[2] N. N. Popov, O. Chernova, “Solution of nonlinear creep problem for stochastically inhomogeneous plane on the basis of the second approximation for small parameter method”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 4(25), 50–58 | DOI
[3] N. N. Popov, V. P. Radchenko, “Nonlinear stochastic creep problem for an inhomogeneous plane with the damage to the material taken into account”, J. Appl. Mech. Tech. Phys., 48:2 (2007), 265–270 | DOI | Zbl
[4] V. P. Radchenko, Yu. A. Eremin, Rheological deformation and fracture of materials and structural elements, Mashinostroenie-1, Moscow, 2004, 265 pp.
[5] V. P. Radchenko, N. N. Popov, “Statistical characteristics of stress fields and creep strains of a stochastically inhomogeneous plane”, Izv. Vuzov. Mashinostroenie, 2006, no. 2, 3–11
[6] N. N. Popov, L. V. Kovalenko, M. A. Yashin, “Solution of plane nonlinear stochastic problem with spectral representation method”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 2(19), 99–106 | DOI
[7] L. V. Kovalenko, N. N. Popov, V. P. Radchenko, “Solution of the plane stochastic creep boundary value problem”, J. Appl. Math. Mech., 73:6 (2009), 727–733 | DOI | MR | Zbl
[8] A. A. Sveshnikov, Applied Methods of the Theory of Random Functions, Pergamon, Oxford, 1966, ix+321 pp. | MR | MR | Zbl | Zbl
[9] Regularities of Creep and Creep Strength, ed. S. A. Shesterikov, Mashinostroenie, Moscow, 1983, 102 pp.