Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_3_a4, author = {I. L. Kogan}, title = {Construction of {Mikusinski} operational calculus based on the convolution algebra of distributions. {The} theorems and the beginning of use}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {56--68}, publisher = {mathdoc}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a4/} }
TY - JOUR AU - I. L. Kogan TI - Construction of Mikusinski operational calculus based on the convolution algebra of distributions. The theorems and the beginning of use JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 56 EP - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a4/ LA - ru ID - VSGTU_2013_3_a4 ER -
%0 Journal Article %A I. L. Kogan %T Construction of Mikusinski operational calculus based on the convolution algebra of distributions. The theorems and the beginning of use %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 56-68 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a4/ %G ru %F VSGTU_2013_3_a4
I. L. Kogan. Construction of Mikusinski operational calculus based on the convolution algebra of distributions. The theorems and the beginning of use. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 56-68. http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a4/
[1] I. L. Kogan, “Construction of Mikusinski operational calculus based on the convolution algebra of distributions. Basic provisions”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 2(27), 44–52 | DOI | Zbl
[2] R. Courant, D. Hilbert, Methods of mathematical physics, v. 2, Partial differential equations, Interscience Publ., New York, 1962, 830 pp. ; R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 830 pp. | Zbl | MR
[3] V. P. Maslov, Operator methods, Nauka, Moscow, 1973, 543 pp. | MR
[4] M. A. Lavrent'ev, B. V. Shabat, Methods of the theory of functions in a complex variable, Nauka, Moscow, 1987, 688 pp. | MR | Zbl
[5] L. Schwartz, Methodes mathematiques pour les sciences physiques, Hermann, Paris, 1961, 392 pp. ; L. Shvarts, Matematicheskie metody dlya fizicheskikh nauk, Mir, M., 1965, 412 pp. | MR | Zbl | MR
[6] I. L. Kogan, “Method of Duhamel Integral for Ordinary Differential Equations with Constant Coefficients in Respect to the Theory of Distributions”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), 37–45 | DOI